
www.manaraa.com

 I

Tuning SQL Statements by Implementing Mobile

Agent Transparent Interface Layer

By

Imad Hasan Saleh

Supervisor

Prof. Dr. Alaa Hussein Al-Hamami

This Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of Master in Computer

Science.

 Department of Computer Science

Graduate College of Computing Studies

Amman Arab University for Graduated Studies

May, 2009

Amman Jordan

www.manaraa.com

 II

www.manaraa.com

 III

www.manaraa.com

 IV

Acknowledgments

First of all, my prayers and thanks to ALLAH, Who helped me

complete this thesis. I would like to thank my supervisor Prof. Dr.

Alaa Hussein Al-Hamami for his support, patience, and good

directions that guided me toward a qualitative methodology.

 I would like to thank the examining committee, all my

colleagues and relatives for supporting me from the beginning.

Consequently many thanks go to all lecturers, and the

administrative staff of Amman Arab University for their support.

 All thanks to my mother for her prayers and courage, and

special thanks to my adored wife who from the beginning had

confidence in my abilities not only to attain a degree, but also to

attain it with excellence. Also a lot of thanks to my brothers and

sisters.

www.manaraa.com

 V

Dedication

I dedicate this work to my patient mother.

To my adored wife.

To my lovely children.

Imad

www.manaraa.com

 VI

Arabic Summary

www.manaraa.com

 VII

www.manaraa.com

 VIII

Tuning SQL Statements by Implementing Mobile Agent

Transparent Interface Layer

Prepared by

Imad Hasan Saleh

Supervisor

Prof. Dr. Alaa Hussein Al-Hamami

ABSTRACT

 Database applications performance depends on embedded

SQL commands written inside the application. So application

developers have to write optimized SQL commands to gain

performance. Unfortunately some of application developers are

novice programmers and the others do not care about performance.

To gain performance, application source code should be opened by

programmers and SQL commands should be written again.

This research presents an agent as a middle layer between

application interface front end and database back end. The

responsibilities of the agent are catching the SQL commands sent

by application before reaching the database then examining these

commands, and correcting them if they have errors then rewrite

them in a tuned format if the SQL commands are not tuned. This

thesis will focus on rewriting the SQL commands without application

modification.

www.manaraa.com

 IX

 This research presents the design and implementation of the

agent as a proposed solution for SQL command tuning. It includes

the basic building blocks of the agent, and how these blocks

communicate with each other to achieve the requirements.

 In this thesis, the researcher describes the solution for each

reason that makes the SQL command slow, designs an agent to

receive poor commands and translates them to efficient commands,

implements the agent in real word environment, and tests the results

by comparing the old commands with new translated commands. All

of this work is done without opening the application source code and

modifying it, the agent will do all of the work transparently without

affecting the running application.

 In this research, there is also a representation of performance

analysis for the agent, comparing the SQL command with no agent

environment by SQL command after implementing the agent

through considering performance measurements metrics and

statistics, such as real time, physical reads, logical reads and others.

 The performance measurements benchmark test results of

the proposed agent were highly and positively correlated with

acceptance levels, and amazing achievement to score more than

99% of performance enhancement compared with no agent

environment.

Mobile agent solution eliminates any development changes on

the existing system, and uses existing features of the database, so

the agent reduces the financial cost of application tuning.

www.manaraa.com

 X

Table of Contents

Dedication ..V

Arabic Summary ... VI

ABSTRACT ... VIII

Table of Contents ..X

List of Tables ... XV

Chapter one Introduction ... 1

1.1. Overview ... 1

1.2 Managing Performance .. 3

1.3 Managing Factors .. 4

1.4 Mobile Agent .. 6

1.5 Overview of SQL language .. 9

1.5.1 Query .. 11

1.5.2 Data Manipulation ... 13

1.5.3 Transaction Control ... 14

1.5.4 Data Definition ... 14

1.5.5 Data Control .. 15

1.5.6 Test Case Database.. 15

1.6 Overview of SQL Statement Tuning ... 15

1.6.1 Overview ... 16

1.6.2 Sequential Search versus Binary Search .. 17

1.7 Extensible Markup Language ... 19

1.7.1 XML Elements ... 20

1.7.2 XML Attributes ... 21

1.7.3 XML and HTML ... 22

1.8 The Problem Statement ... 23

1.9 Thesis Contribution .. 25

1.10 Thesis Organization ... 26

Chapter two Background and related work .. 28

2.1 Overview .. 28

2.2 Literature Survey .. 29

2.2.1 Query Rewrite Using Materialized Views .. 29

2.2.2 Query Rewrite and XML .. 32

2.2.3 Enhancing Optimizer Capabilities ... 34

www.manaraa.com

 XI

2.2.4 Mobile Agent ... 35

2.2.5 Miscellaneous ... 38

2.3 Detailed Problem Statement .. 40

2.4 Problem Still Exists .. 45

Chapter Three Proposed System Design .. 46

3.1 Overview .. 46

3.2 Optimizer .. 46

3.3.1 Parse Phase .. 50

3.3.2 Bind Phase .. 50

3.3.3 Execute Phase .. 51

3.3.4 Fetch Phase .. 51

3.3.5 Query Execution Plan .. 51

3.4 The Proposed System Design .. 54

3.5 Detailed System Design ... 57

3.5.1 Login Use-case ... 62

3.5.2 Validate Dictionary Use-case .. 62

3.5.3 Check Syntax Use-case .. 63

3.5.4 Check for Rewrite Use-case and Rewrite Use-case 64

3.5.5 Compare Results Use-case .. 65

3.5.6 Save Results to History Use-case ... 66

3.6 Test Case Design ... 67

Chapter Four Implementation and Experimental Work 70

4.1 Overview .. 70

4.2 Metrics and Statistics ... 70

4.3 Access Paths ... 72

4.4 Use-case Implementation ... 75

4.4.1 Login Use-case ... 75

4.4.2 Validate Dictionary Use-case .. 78

4.4.3 Check Syntax Use-case .. 81

4.4.4 Check for Rewrite Use-case and Rewrite Use-case 86

4.4.4.1 Check for Calculation ... 86

4.4.4.2 Check for Type Conversion .. 90

4.4.4.3 Check for Index Usage ... 93

4.4.4.4 Check for Join .. 96

4.4.5 Compare Results Use-case .. 102

4.4.6 Save Results to History Use-case ... 106

Chapter Five Agent Performance Analysis .. 108

www.manaraa.com

 XII

5.1 Overview .. 108

5.2 Performance Analysis Measurements .. 108

5.3 Calculations, Type Conversion, and Index Usage Benchmarks 111

5.3.1 Experimental Scenarios .. 112

5.3.2 Variables Discipline ... 115

5.3.3 Measurement Benchmark ... 115

5.3.4 Results Comparison .. 118

5.3.4.1 Real Time Test Results Comparison .. 118

5.3.4.2 CPU Cost Test Results Comparison .. 120

5.3.4.3 IO Cost Test Results Comparison .. 121

5.4 Join Benchmarks .. 123

5.4.1 Experimental Scenarios .. 123

5.4.2 Variables Discipline ... 125

5.4.3 Measurement Benchmark ... 126

5.4.4 Results Comparison .. 128

5.4.4.1 Real Time Test Results Comparison .. 128

5.4.4.2 Consistent Gets Test Results Comparison 130

5.5 Overhead Has No Influence ... 131

5.6 Statistics Limitations ... 132

Chapter Six Conclusion and Future Work .. 133

6.1 Overview .. 133

6.2 Thesis Conclusion .. 133

6.2.1 Performance .. 133

6.2.2 Performance Enhancements ... 134

6.2.3 Using Agent ... 134

6.2.4 Performance Analysis ... 135

6.3 Recommendations for Future Work ... 135

6.3.1 Development of Proposed Solution Field .. 135

6.3.2 Performance Analysis of Proposed Solution Field 136

References .. 137

www.manaraa.com

 XIII

Acronyms and Abbreviations

ANSI American National Standards Institute

BLOB Binary Large Object

CLOB Character Large Object

CPU Central Processing Unit

DBA DataBase Administrator

DBMS DataBase Management System

DCL Data Control Language

DDL Data Definition Language

DML Data Manipulation Language

DSS Decision Support System

HTML HyperText Markup Language

IO Input Output

IT Information Technology

JDBC Java DataBase Connectivity

MA Mobile Agent

MAMDAS Mobile Data Access System framework

MS MicorSoft

MV Materialized View

OCI Oracle Call Interface

OLAP OnLine Analytical Processing

OLTP OnLine Transactional Processing

QEP Query Execution Plan

RDBMS

Relational DataBase Management

System

SAS Security Annotated Schema

SEQUEL Structured English QUEery Language

SQL Structured Query Language

www.manaraa.com

 XIV

SQO Semantic Query Optimization

SQR Secure Query Rewrite

SSN Social Security Number

TCP Transmission Control Protocol

VARCHAR Variable Character

W3C World Wide Web Consortium

XHTML Extensible HyperText Markup Language

XML Extensible Markup Language

www.manaraa.com

 XV

List of Tables

Table (4-1): Tables Summary 73

Table (5-1): Metrics for Different Row Number 88

Table (5-2): Statistics for Different Row Number 88

Table (5-3): Metrics for Join 95

Table (5-4): Statistics for Join 96

www.manaraa.com

 XVI

LIST OF FIGURES

Figure (1-1): Mobile Agent Movement 6

Figure (1-2): Mobile Agent 7

Figure (1-3): XML Document 15

Figure (1-4): Parts of database applications 17

Figure (2-1): EMPLOYEES table Structure 30

Figure (2-2): Results of first SQL command 30

Figure (2-3): Results of second SQL command 31

Figure (3-1): Optimizer Operations 35

Figure (3-2): SQL Statement Processing Phases 36

Figure (3-3): Nested loops join 38

Figure (3-4): Sort-Merge joins 39

Figure (3-5): Proposed System 40

Figure (3-6): System Use-Case Diagram 42

Figure (3-7): System Class Diagram 44

Figure (3-8): Login Sequence Diagram 45

Figure (3-9): Validate Dictionary Sequence Diagram 46

Figure (3-10): Check Syntax Sequence Diagram 46

Figure (3-11): Check for Rewrite Sequence Diagram 47

Figure (3-12): Compare Results Sequence Diagram 48

Figure (3-13): Save Results to History Sequence Diagram 49

Figure (3-14): Database Design for Conference System 50

Figure (4-1): Metrics and Statistics 52

Figure (4-2): Login Dialog 56

Figure (4-3): Login Flowchart Diagram 57

www.manaraa.com

 XVII

Figure (4-4): Dictionary XML File 58

Figure (4-5): Validate Dictionary Flowchart Diagram 59

Figure (4-6): Agent Interface 61

Figure (4-7): Agent Online Syntax Checking 61

Figure (4-8): Agent Offline Syntax Checking 62

Figure (4-9): Check Syntax Flowchart 63

Figure (4-10): Simple Operation Rewriting 65

Figure (4-11): Complex Operation Rewriting 65

Figure (4-12): Check for Calculation Flowchart 66

Figure (4-13): Type Conversion Rewriting 68

Figure (4-14): Check for Type Conversion Flowchart 69

Figure (4-15): Index Usage Rewriting 70

Figure (4-16): Check for Index Usage Flowchart 71

Figure (4-17): Check for Join Rewriting 74

Figure (4-18): Check for Join Flowchart 75

Figure (4-19): Comparison in Progress 77

Figure (4-20): Comparison is Finished 77

Figure (4-21): Compare Results Flowchart 78

Figure (4-22): Comparison XML File 79

Figure (4-23): Save Results Flowchart 80

Figure (5-1): Logarithmic Chart for Real Time Results Comparison 89

Figure (5-2): Logarithmic Chart for CPU Cost Results Comparison 90

Figure (5-3): Logarithmic Chart for IO Cost Results Comparison 91

Figure (5-4): Logarithmic Chart for Consistent Gets Results

Comparison

92

Figure (5-5): Logarithmic Chart for Real Time Results Comparison 97

Figure (5-6): Logarithmic Chart for Consistent Gets Results

Comparison

98

www.manaraa.com

 1

Chapter one

Introduction

1.1. Overview
Over the last half century DataBase Management System

(DBMS) has been very mass-produced and successful, even about

$15 billion in 2005 of the worldwide market was for DBMS software

with a 10% estimated annual growth. Database applications

become a core component in most organizations [27]. These

systems are becoming increasingly complex and the task of

management to ensure acceptable performance for all applications

is very difficult. In recent years, this complexity has approached a

point where even DataBase Administrators (DBAs) and other highly

skilled information technology professionals are unable to

comprehend all aspects of a DBMS’s day-to-day performance and

manual management has become virtually impossible [13].

Nowadays it is very common to deal with large size databases

containing millions and even trillions of records. It is not rare to see

databases with gigabyte size or even with terabyte size. Query

language can be used to access these databases and as we know

query language should be declarative, so we can write alternative

formulas to perform same query. And different query formulas

provide variation in performance.

It is widely accepted to have a large number of users

accessing the database at the same time, so different type of

www.manaraa.com

 2

queries submitted to database to perform with minimal

response time. Sometimes number of simultaneously connected

users exceeded tens of millions.

Also database must support different types of applications

starting from OnLine Transactions Processing (OLTP) applications

to data ware housing and Decision Support System (DSS)

applications. This variation of applications need different storage

types starting from simple numbers and characters towards images,

sounds and videos, even so documents and files.

Large database size, large number of users, and variation of

applications can put the database in a difficult situation, even so in

critical situation and this may cause Relations DataBase

Management System (RDBMS) hanging and jamming. In spite of

that we need good performance and acceptable response time, so

we have to overcome all of these situations.

 Database Application efficiency and performance strongly

depends on SQL commands written by programmers, so

programmers have to write SQL commands on optimized way.

Unfortunately some programmers are novice and may have

misspelling commands, even experts do not care about

performance. To gain some performance, application should be

edited and SQL commands should be written again. This thesis will

focus on rewriting tuned SQL commands without application

modification.

www.manaraa.com

 3

Application tuning is one of the major areas for database

administrator and application developers, and needs a lot of efforts

and it is time consuming. Anyone involved in tuning should follow a

tuning methodology to achieve maximum performance. Tuning SQL

statements is an important step that is least expensive when

performed at its proper moment in the methodology [21]. In addition

to tuning at the right time, you should also have a good

understanding of the issues involved in performance management

and the types of performance problems that might arise.

1.2 Managing Performance
Performance Tuning can be achieved in several stages and

implemented in all system development life cycle faces. Tuning

spans through system development life cycle, starts from analysis

stage and extends to deployment stage, but focus in tuning

increased in design and development stages. Application tuning is

team dependent, and can be achieved by joining the force of

database administrators, system administrators, analysts and

programmers. So these parties can define their objectives very

clearly and can put measurable tasks, because specific tuning tasks

can be achieved and completed in a short time in contrast with

general problems. A tuning baseline will come up to scene and a

comparison can be done to see the amount of gain or lost from

previous tuning tasks. A database of tuning problems and solutions

can be registered and managed to be as a knowledge base for

performance tuning tasks, and this knowledge base can be very

helpful for anyone dealing with database tuning. Also this knowledge

base can help us to monitor the changes and to measure the

influence of these changes to performance.

www.manaraa.com

 4

Typically, 20% of database transactions (including select

statement) account for 80% of the system usage. The transactions

that make up this 20% are the ones that must be tuned, and tuning

anything else is probably not worth your time and energy. You can

supplement this phenomenon with the following corollary: 50% of

the utilization comes from 5% of database transactions, which

means that most of database resources are consumed by a few

statements. Tuning these few statements reduces the amount of

resources consumed, thereby performance will be increased [21].

1.3 Managing Factors
 Performance management can be divided into the following

areas. Although the areas are separate, they are also

interdependent and require different skill sets [21].

Schema Tuning: Schema tuning deals with the physical structure

of the data. If an application has inadequate or inappropriate data

design, then tuning the physical allocation, providing indexes or

rewriting programs will not overcome the problem.

Application Tuning: Application tuning deals with such business

functions as 24/7 availability, OLAP, OLTP, as well as the program

modules or applications that implement the functions. Tuning the

procedural code for the type of application and tuning the embedded

SQL statements are also included in this area. If an application is

well designed, it may still perform badly. A common reason for this

is badly written SQL.

www.manaraa.com

 5

Instance Tuning: Each database caches its data in server memory

to speed next access of the same data, the cache location is called

an instance and it dramatically affects the application performance.

Database Tuning: Database tuning deals with managing the

physical arrangement of data on disk. If data is distributed in multi

disk drive, performance can be increased by parallel reading and

writing instead of sequential use.

User Expectations: Users expect consistent performance. They

can cope with slower application functions if they understand why

the application is slower than usual. The project team should try to

build a realistic user expectation of performance, possibly including

application messages to warn operators that they are requesting

operations that are resource-hungry. The best time to do this is

before the design and build phases and as part of the transition

phase.

Hardware, Network Tuning: It deals with performance issues

arising from the CPU and from network traffic, the main hardware

components are listed below:

CPU: There can be one or more CPUs, and they can vary in

processing power from simple CPUs found in hand-held devices

to high-powered server CPUs on system.

Memory: Database and application servers require considerable

amounts of memory to cache data and avoid time-consuming

disk access.

www.manaraa.com

 6

I/O Subsystem: The I/O subsystem can vary between the hard

disk on client PC and high performance disk arrays. Disk arrays

can perform thousands of I/O each second and provide

availability through redundancy in terms of multiple I/O paths and

hot pluggable mirrored disks.

Network: The primary concerns with network specifications are

bandwidth (volume) and latency (speed).

1.4 Mobile Agent
Mobile Agent (MA) systems have for some time been seen as

a promising paradigm for the design and implementation of

distributed applications. A mobile agent is a program that can

autonomously migrate between various nodes of a network and

perform computations on behalf of a user. Some of the benefits

provided by MAs for creating distributed applications include

reduction in network load, overcoming network latency, faster

interaction and disconnected operations [8].

Mobile agent is defined as computer software and its data

which has the ability to move from one machine to another

transparently to continue its work in the second machine. Also

mobile agent has the ability to learn from previous experience as

shown in Figure (1-1).

www.manaraa.com

 7

A suitable application for mobile agents is the electronic

commerce. Mobile agent technologies can be used to automate

several of the most time consuming stages of the buying process.

Unlike "traditional" software, mobile agents are personalized, and

autonomous. MA move around the network searching for a user

specified product across different shops. With the MA moving to the

shops, the number of information exchange is local and is not over

the network, thus saving network latencies and load. Using the

mobile agent technology client specific queries could be

executed at the shops site. Qualities inherent to MAs are

conducive for optimizing the whole buying experience and

revolutionizing e-commerce over then net. Rahul Jha [23] believes

that the effective use of mobile agents can dramatically reduce

transaction cost in general.

Client server model versus mobile agent model. Most of new

technologies prefer to use mobile agent instead of traditional client

server model to overcome the client server limitations such as

Figure (1-1) Mobile Agent Movement

www.manaraa.com

 8

 flexibility, scalability, cost, fault tolerance, and of course

portability. All of these features exist in client server architecture but

can be enhanced and improved if we switched to mobile agent

model. In client server model data processed in pipelined fashion at

server side and all client information has to be transferred to server

throw network. In mobile agent model, the agent will move from

client to client and process the information locally at client side and

the architecture will be as multi server model. So instead of moving

data between machines to process it, the program (agent) moves to

data location to process it locally as shown in Figure (1-2) [15]. This

approach leads us to Grid technology.

By using mobile agent model, processing task can be

partitioned into multiple lightweight agents. This family of agents is

distributed among the cluster and competes with computing

resources. This approach of computation is advantageous in that

the system operates as an autonomous entity. Agents execute as a

collaborative team, working around node failures and system

bottlenecks. Additional computing resources can be added and

exploited dynamically, enhancing both the system flexibility and

scalability [15].

Figure (1-2) Mobile Agent [15]

www.manaraa.com

 9

One of the best justifications for using mobile agent is that the

paradigm is specially appropriate for computing on network devices.

This is so because, with proper implementation, mobile agents [15]:

1- Allow efficient and economical use of communication

channels which may have low bandwidth, high latency, and

may be error-prone.

2- Enable the use of portable, low-cost, personal

communications devices to perform complex tasks even when

the device is disconnected from the network.

3- Another attractive property of the mobile agent paradigm is

that it allows an application to be truly distributed, as much as

the tasks involved in an application,

1.5 Overview of SQL language
The name SQL is derived from Structured Query Language.

Originally, SQL was called SEQUEL (for Structured English QUEery

Language) and was designed and implemented as IBM research

and as the interface for an experimental relational database system

called SYSTEM R. SQL is now the standard language for

commercial relational DBMSs. A joint effort by ANSI (American

National Standards Institute) and ISO (International Standards

Organization) has led to standard version of SQL (ANSI 1986) called

SQL-86 or SQL1. A revised and much expanded standard called

SQL2 also referred to as SQL-92 was subsequently developed. The

next version of the standard was originally called SQL3, but it is now

called SQL-99 [24].

The SQL language may be considered one of the major

reasons for the success of relational database in the commercial

www.manaraa.com

 11

 world. It became a standard for relational databases; so users

were less concerned about migration of their database applications

from other types of database systems –for example, network or

hierarchical systems- to relational systems. The reason is that even

if users became dissatisfied with the particular relational DBMS

product they chose to use, converting to another relational DBMS

product would not be expected to be too expensive and time-

consuming, since both systems would follow the same language

standards. In practice, of course, there are many differences

between various commercial relational DBMS packages but they

still have the same standard, so each vender can put his flavor and

enhancements to enhance productivity, as an example we may find

statements in ORACLE database that not do exist in MS-SQL

database, but they both still implement the standard SQL language.

Another advantage of having such a standard is that users may write

statements in a database application program that can access data

stored in two or more relational DBMSs without having to change

the database sublanguage (SQL) if both relational DBMS support

standard SQL.

SQL is a comprehensive database language: It has

statements for Data Definition (DDL), Data Manipulation (DML), and

Data Control (DCL). In addition it has facilities for defining views and

synonyms on the database. The latest SQL-99 standard is divided

into a (core) specification plus optional specialization (packages).

The core is supposed to be implemented by all RDBMS venders.

The packages can be implemented as optional modules to be

www.manaraa.com

 11

 purchased independently for specific database applications

such as data mining, spatial data, temporal data, data warehousing,

on-line analytical processing (OLAP), multimedia data, and so on.

1.5.1 Query

The most common operation in SQL databases is the query,

which is performed with the declarative SELECT keyword. SELECT

retrieves data from a specified table, multiple related tables in a

database or the result of an expression. While often grouped with

Data Manipulation Language (DML) statements, the standard

SELECT query is considered separate from SQL DML, as it has no

persistent effects on the data stored in a database. Note that there

are some platform-specific variations of SELECT that can persist

their effects in a database, such as the SELECT INTO syntax that

exists in some databases to put the selected value into a variable,

or SELECT FOR UPDATE to lock the selected record from update

or delete until releasing this record by COMMIT or ROLLBACK

command.

SQL queries allow the user to specify a description of the

desired result set, but it is left to the devices of the database

management system (DBMS) to plan, optimize, and perform the

physical operations necessary to produce that result set in as

efficient a manner as possible. An SQL query includes a list of

columns to be included in the final result immediately following the

SELECT keyword. An asterisk "*" can also be used as a "wildcard"

indicator to specify that all available columns of a table (or multiple

tables) are to be returned [30]. SELECT is the most complex

statement in SQL, with several optional keywords and clauses,

including:

http://en.wikipedia.org/wiki/Select_(SQL)
http://en.wikipedia.org/wiki/Table_(database)
http://en.wikipedia.org/wiki/Data_Manipulation_Language
http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Query_plan
http://en.wikipedia.org/wiki/Query_optimizer

www.manaraa.com

 12

1- The FROM clause which indicates the source table or tables

from which the data is to be retrieved. The FROM clause can

include optional JOIN clauses to join related tables to one

another based on user-specified criteria.

2- The WHERE clause includes a comparison predicate, which

is used to restrict the number of rows returned by the query.

The WHERE clause is applied before the GROUP BY clause.

The WHERE clause eliminates all rows from the result set

where the comparison predicate does not evaluate to true.

3- The GROUP BY clause is used to combine, or group, rows

with related values into elements of a smaller set of rows.

GROUP BY is often used in conjunction with SQL aggregate

functions or to eliminate duplicate rows from a result set.

4- The HAVING clause includes a comparison predicate used to

eliminate rows after the GROUP BY clause is applied to the

result set. Because it acts on the results of the GROUP BY

clause, aggregate functions can be used in the HAVING

clause predicate.

5- The ORDER BY clause is used to identify which columns are

used to sort the resulting data, and in which order they should

be sorted (options are ascending or descending). The order of

rows returned by an SQL query is never guaranteed unless an

ORDER BY clause is specified.

The following is an example of a SELECT query that returns a

list of rich employees. The query retrieves all rows from the

Employees table in which the Salary column contains a value

http://en.wikipedia.org/wiki/From_(SQL)
http://en.wikipedia.org/wiki/Join_(SQL)
http://en.wikipedia.org/wiki/Where_(SQL)
http://en.wikipedia.org/wiki/Group_by_(SQL)
http://en.wikipedia.org/wiki/Having_(SQL)
http://en.wikipedia.org/wiki/Order_by_(SQL)

www.manaraa.com

 13

 greater than 5000.00. The result is sorted in ascending order

by Name. The asterisk (*) in the select list indicates that all columns

of the Employees table should be included in the result set.

 SELECT *

 FROM Employees

 WHERE Salary > 5000.00

 ORDER BY Name

The example below demonstrates the use of multiple tables in

a join, grouping, and aggregation in an SQL query, by returning a

list of Departments and the number of Employees working in each

department. Note the alias of the count(*) column

(No_Of_Employees) used after AS keyword, also the table

Department alias (d), Employee table alias (E).

 SELECT d.Name, count(*) AS No_Of_Employees

 FROM Departments d, Employees E

 WHERE d.Deptno = E.Deptno

 GROUP BY d.Name

1.5.2 Data Manipulation
The standard DML commands used for entering data to table

using INSERT command, updating old values by new values by

using UPDATE command and removing data from table by DELETE

command. The example below demonstrates the three commands:

INSERT INTO Employees (Id,Name,Salary,Deptno)

VALUES (109,'Basem',3000.00,10)

www.manaraa.com

 14

UPDATE Employees

SET Salary = 3500.00

WHERE Id = 109

DELETE FROM Employees

WHERE Id = 109

The interesting thing is that we can put a SELECT statement

in a DML command if we want to insert data from table to another

table, updating records retrieved by select statement, or deleting

record retrieved by select statement. In SQL:2003 a new command

came out, the MERGE command is used to combine the data of

multiple tables. It is something of a combination of the INSERT and

UPDATE elements.

1.5.3 Transaction Control
The transaction is the group of commands ended by COMMIT

or ROLLBACK command. Once the COMMIT statement has been

executed, the changes cannot be rolled back. In other words, it is

meaningless to have ROLLBACK executed after COMMIT

statement and vice versa

1.5.4 Data Definition
Data definition language (DDL) consists of five commands

(CREATE, ALTER, RENAME, DROP, TRUNCATE) which allow to

control the structure of the table and to change the definition of the

table.

CREATE is used to present an object such as table in the database.

ALTER is used to modify the structure of existing table, such as

adding column, modifying existing column type, removing column

from table. RENAME is used to change the table name. DROP is

www.manaraa.com

 15

 used to remove the object structure and its data. TRUNCATE is

used to remove the data but remaining the table structure (fast

delete).

1.5.5 Data Control
The two data control language (DCL) commands (GRANT,

REVOKE) are used to control the privileges about an object. With

GRANT command, we can permit other users to access or

manipulate our objects and with REVOKE command we forbid

others from accessing or manipulating our objects.

1.5.6 Test Case Database
 The test database used to execute the SQL commands will be

relational database management system and one of the databases

that dominates the market place with a lot of capabilities and

features. The relations created in this database will hold starting

from two million records in a relation, to 10 million records in a

relation.

1.6 Overview of SQL Statement Tuning
Putting any application in production phase can reveal a lot of

factors and problems of how transactions and queries use the

database. Resource utilization and database query optimization can

be discovered. Most of relational database management systems

RDBMSs provide facilities to see the execution plan for any SQL

statement. And from these execution plans we can see the problem

of the command and why it takes more time that it should take. A

poor command can be discovered by monitoring some facts such

as, the command which makes a lot of disk access or makes full

table scan to read a small number of data. Another fact is the

execution plan which shows that the SQL command does not use

indexes related to selected table.

www.manaraa.com

 16

1.6.1 Overview
The optimizer of any RDBMS will take the decision of how the

command will be executed depending on statistics gathered for the

target tables and related indexes. So if the SQL command received

by the optimizer has poor conditions, the optimizer will generate

poor execution plan. From this fact SQL command has to fit some

rules like [21]:

- Driving table has the best filter.

- Fewer numbers of rows are being returned to the next step.

- The join method is appropriate for number of rows being

returned.

- Views are used efficiently.

- There are no unintentional cartesian products.

- Each table is being accessed efficiently.

- Predicates in the SQL statement and the number of rows

in the table.

- A full table scan does not mean inefficiency.

Data can be fetched from database in several ways. The

slower way is reading the data sequentially from table (full table

scan). But the faster way is reading the data using ordered index,

because the index contains the required column in order and the

physical location of the record for that column (pointer), so a binary

search on the specified column can be done using this index to get

the physical location of the record (pointer), then fetching the data

using this pointer. Most of RDBMSs provide facilities to see the

usage of indexes and the steps of executing these indexes.

www.manaraa.com

 17

The only solution that most of RDBMSs provide for

programmers and database administrators to change the execution

plan for the SQL command is rewriting the command again in

efficient way. And they put some guidelines to do that, some

RDBMSs provide more facilities to store the execution plans and

statistics for any command to be exported for another database.

Some guidelines are mentioned below [21]:

- Compose predicates using AND and =.

- Avoid transformed columns in the WHERE clause.

- Avoid mixed-mode expressions and beware of implicit type

conversions.

- Write separate SQL statement for specific tasks.

- Use EXISTS rather than IN for subqueries.

- Control the access path and join order with hints.

- Remove nonselective indexes to speed the DML.

- Index performance-critical access path.

- Reorder columns in existing concatenated indexes.

- Add columns to the index to improve selectivity.

- Consider index-organized tables.

1.6.2 Sequential Search versus Binary Search
Sequential search is a search algorithm, also known as linear

search. It operates by checking every element one at a time in

sequence in the list and compares it with required value. Linear

search runs in O(n) which means that the worst case will need

number of comparisons as the number of elements in the set, in

database system most of the cases are the worst cases because

www.manaraa.com

 18

 we may have the same data inserted more than once like

names, salaries, jobs and so on, so if we find the required data we

have to continue to the end to find the other value. Sequential

search in large amount of data may have a long time, we are not

talking about couple of seconds; search may take minutes and some

times hours [31].

Binary search is a technique to locate a value in an ordered

list. The method makes progressively better guesses, and closes in

on the location of the required value by selecting the middle element

in the list (because the list is in sorted order, is the center value),

comparing its value to the target value, and determining if it is

greater than, less than, or equal to the target value. A guessed index

whose value turns out to be too high becomes the new upper bound

of the list, and if its value is too low that index becomes the new

lower bound. Only the sign of the difference is inspected. Pursuing

this strategy iteratively, the method reduces the search list by a

factor of two each time, and soon finds the target value or else

determines that it is not in the list at all. A binary search is an

example of divide and conquer search algorithm. Binary search runs

in O(logN) and for sure it is faster than sequential search [32].

An index is a database object that is logically and physically

independent of the table data. Any RDBMS may use an index to

access data that is required by a SQL statement, or it may use

indexes to enforce integrity constraints. You can create and drop

indexes at any time after creating the table object. Indexes can be

unique or non unique. Unique indexes guarantee that no two index

www.manaraa.com

 19

entries have the same value. But duplicate can exist in a non

unique index. A composite index (also called a concatenated index)

is an index that is created on multiple columns in a single table.

Columns in a composite index which can appear in any order and

need not be adjacent in the table. For standard indexes, RDBMS

uses B*-tree indexes that are balanced to equalize access times.

B*-tree indexes which normally make the SQL command to be

executed use binary search instead of using sequential table

search, and this is the reason for creating indexes in database

applications.

1.7 Extensible Markup Language
 XML is the abbreviation for Extensible Markup Language.

XML documents look similar to Hypertext Markup Language (HTML)

documents, although they are very different. HTML is a markup

language, primarily used for formatting and displaying text and

images in a browser. XML is a markup language for structuring data

rather than formatting information.

We use XML to create a document that contains structured

data that can be used or interpreted by other applications. The

format or structure is straightforward and can be used by any person

or program that can read text. Unlike HTML, the tags in XML are

extensible, and so we can create our own tags as we need them.

HTML has a set of predefined formatting tags that we can use, but

we cannot create our own. XML is a markup language that provides

a universal format for structured documents and data on the web

and it is part of the World Wide Web Consortium (W3C) standards

[9].

www.manaraa.com

 21

1.7.1 XML Elements
The example illustrated in Figure (1-3) is a sample of XML

document that uses nested elements to describe the database

dictionary. XML file must start with a line (<?xml version="1.0" ?>)

as an XML declaration line and the document file is recognized as

XML file. Elements are identified by tag names, such as

DBdictionary, tables, table, column and so on. Tag names are

distinguishable as markup, rather than data, because they are

surrounded by angle brackets (< and >) and they are case-sensitive.

In XML, an element includes the start tag (<DBdictionary>), end

tag (</DBdictionary>), called root element and all the markups and

character data contained between the tags inside the root element

tag.

www.manaraa.com

 21

Figure (1-3) XML Document

1.7.2 XML Attributes
Attributes are simple name-value pairs that are associated

with a particular element. XML attributes must be specified after the

start tag of an element. As an example from pervious document, the

name attribute in the table tag (<table name="DEPT" >). Attribute

names are case-sensitive and follow the naming rules that apply to

www.manaraa.com

 22

 element names. In general, spaces are not used, but are

allowed on either side of the equal sign. The attribute values must

always be in matching quotes, either single or double quotes.

Attributes provide additional information about the XML document’s

content or other XML elements. Attributes can be used to describe

how the XML document data is encoded or represented, indicate

where the links or external resources are located, specifying an

element instance in the document for facilitating a rapid search.

1.7.3 XML and HTML
 The key difference between XML and Hyper Text Markup

Language (HTML) is that XML is a markup language for describing

data but HTML is a markup language for formatting data, XML

contains user defined markup tags but HTML contains predefined

markup tags, XML can be displayed as a document tree in the web

browser but HTML will be formatted in the web browser, XML is

extensible language and we can add elements as we need but

HTML is not extensible, XML confirms to rules for will-formed

document but HTML do not confirm to rules of will-formed

document.

 The World Wide Web Consortium (W3C) has worked on

defining the Extensible HyperText Markup Language (XHTML) as a

successor to HTML. XHTML is designed to conform to XML

standards and well-formed document rules, and provide a way to

reproduce, subset, and extend HTML documents. An XHTML

document is a particular XML document instance intended for

processing by a Web browser. Not all browsers support XHTML

document and different browsers often process XHTML documents

in different ways [9].

www.manaraa.com

 23

1.8 The Problem Statement
The researcher's aim is to execute SQL commands faster than

original commands; this can be achieved by implementing many

things like: rewriting the SQL command again with new structure to

use existing database object efficiently, using mobile agent that

navigates through existing servers to minimize network overheads

and roundtrips, minimize the incorrect SQL commands written by

naïve users by automatically correct them before reaching the

RDBMS.

As we know any database application has two parts as shown

in Figure (1-4):

1. The first part (Application) which contains code and

application logic, in this part programmers write the SQL

commands.

2. The second part (RDBMS) is the physical structure of the

application which contains tables, relations, indexes, views

and other objects. In fact this part will receive the SQL

commands from the first part and then executes these

commands to return results back.

www.manaraa.com

 24

The application may work slow and may have to be revised for

the following reasons:

1- Some programmers are novice so they write SQL commands

inefficiently and incorrectly, the commands may contain

mistakes, syntax errors, also SQL commands may need more

time than what it should take, and need a lot of I/O roundtrip.

2- Expert programmers may write a very complex SQL

commands but their concern is to get the correct results and

they do not care or give any attention to performance and

efficiency.

3- Some SQL commands may work efficiently in development

phase, but when we move to production, they work very

inefficiently.

4- Number of users working on the application and the amount

of data entered and retrieved from the application may make

some SQL commands work inefficiently.

5- Queries may be generated programmatically.

Application contains

SQL statement

RDBMS executes SQL

statement

Figure (1-4) Parts of database applications

www.manaraa.com

 25

These facts show us that most of programmers and database

users can write SQL command in a correct syntax but they do not

have the required experience and knowledge to know how the

RDBMS optimizer will choose the execution plan to execute the

command. So if SQL command written in a professional way, this

may help the optimizer to choose to best execution path for this

command.

1.9 Thesis Contribution
 Most of work done is to enhance the performance of SQL

commands in the optimizer level. This means that the RDBMS will

receive the SQL command and let the database optimizer to

discover the best execution plan for this statement. But in most

cases we can simplify the optimizer work by sending good written

SQL commands, so the optimizer can work efficiently and will take

the best rule for executing the commands.

 In this thesis, we describe the solution for each reason that

makes the SQL command slow (as mentioned in pervious section),

design an agent to receive poor commands and translates them to

efficient commands, implement the agent in real word environment,

and test the results by comparing the old commands with new

translated commands. All of this work done without opening the

application source code and modifying it, the agent will do all of the

work transparently without affecting the running application.

 The agent mobility will help the existing system to run faster

because when agent moves from machine to machine holding its

information about existing system (system metadata) will reduce

www.manaraa.com

 26

 network messages and roundtrips between servers. Correcting

syntax errors of the SQL commands written by naïve users on the

fly (before reaches the RDBMS) will reduce the communication

between machines. Rewriting the SQL command in efficient way

then sending it to RDBMS also will enhance the performance of the

existing system. RDBMS always receives efficient, good written,

error free SQL commands will not suffer from contentions and

bottlenecks.

1.10 Thesis Organization
In this thesis the researcher focuses on each of the above

problems, first describing each problem against the background of

previous research. He then proposes solutions to the above

problems. The solutions emphasize increasing performance and

decreasing access time. In addition to introductory chapter, there

are five chapters in this thesis.

Chapter 2 will present some researches in the area of query

rewriting with different types of methodologies. Some researches

focused on rewriting SQL command using materialized views

technique, others focused on enhancing database optimizer

capabilities, and other techniques used in the area of database

optimization. Also this chapter focuses on the researches done in

mobile agent field. The last sections of the chapter describe the

research problem in details and how it still exists in spite of all

researches done in this area.

www.manaraa.com

 27

Chapter 3 proposes the system that will solve the research

problem. Also this chapter will discuss the details of the system step

by step and component by component. The last section of this

chapter will present the test database and schema that the research

will use as a test case to do the measurements.

 Chapter 4 will implement the research problem and will do the

experiments needed to test the performance of the agent and how

the agent solves the research problem. This chapter will present the

metrics and statistics needed to be measured and discussed to

make performance analysis. In this chapter an implementation of

each system building block will be discussed in details including

flowcharts and pseudo code for each system component. Also a

screen shots will be taken to show the agent performance.

 Chapter 5 will analyze the agent performance, present

comparisons between old and new statements done to see the

achievement of the agent. Different scenarios will be discussed and

implemented to see different behaviors of the agent. Also

measurement benchmarks will be presented for all types of metrics

and statistics. This chapter will include result comparisons between

old and new statements done by the agent.

 Chapter 6 includes the conclusion and future work. This

chapter presents the conclusion extracted from each bit and piece

discussed in this research. Also it puts the recommendations for

future work that will be focused on the area of SQL tuning.

www.manaraa.com

 28

Chapter two
Background and related work

2.1 Overview
 Complex queries and long running statements have gained

plenty of research attention regarding the application is On-Line

Transaction Processing (OLTP), On-Line Analytical Processing

(OLAP), or Decision Support System (DSS) due to emphasis of

increasing query throughput and decreasing response time. From a

point of view, much of the researches focus on minimizing query

time and provide feedback more quickly by using a physical data

structure created on the database called materialized view, and then

rewrite the SQL command to use the materialized views instead of

original tables.

Section 2.2 will present some of researches in the area of

query rewriting. This section is divided according to the area that

researchers focused on. Section 2.2.1 focused on rewriting using

materialized views, section 2.2.2 describes research efforts in XML

area. Another approach focuses on speeding up the query and gain

more time by making the database optimizer more intelligent and

efficient to decide what is the best execution plan for variety of SQL

commands, section 2.2.3 will briefly present some researches in this

area. Section 2.2.4 will present some researches about agents,

mobile agents and how to communicate with databases. Some

approaches focused on distributed queries and expecting future

queries to enhance search results, section 2.2.5 will present some

researches in this area. In section 2.3 we will describe the thesis

problem in details and what is achieved before, what is left to do?

www.manaraa.com

 29

2.2 Literature Survey
 A lot of studies and researches presented and focused in

query rewriting using materialized views, XML, enhancing optimizer

capabilities, and so on. But few of them focus on the core of this

research which is rewriting the original SQL command. The

following sections will describe related efforts in this area.

2.2.1 Query Rewrite Using Materialized Views
 In recent years the need for large and long running queries

increased dramatically especially when On-Line Analytical

Processing (OLAP) and Decision Support System (DSS) became

very common and appeared in commercial market. In order to

overcome this problem, the technique of using Materialized View

(MV) becomes popular. Materialized view is a physical structure

holds data and reserves space like a table, but it can be created

from joining more than one table, nested select, grouping select, or

any type of select statement. The main difference between table and

materialized view is the way of populating data into this object,

normally we insert data into table but materialized view gets its data

from another table. So by creating materialized views we can

execute queries faster because our query well get data from

materialized views instead of joining or grouping data from original

tables. So we eliminate joining, grouping, or any calculation time by

using materialized view because data already prepared inside it.

A materialized view stores both the definition of a view and the

rows resulting from the execution of the view. Like a view, it uses a

query as the basis. However, the query is executed at the time the

view is created, and the results are stored in a table

www.manaraa.com

 31

(materialized view). You can define the materialized view with

the same storage parameters that any other table has. You can also

index the materialized view table in the same way that you index

other tables to improve the performance of queries executed against

them. When a query can be satisfied with data in a materialized

view, the RDBMS optimizer transforms the query to reference the

view rather than the base tables. By using a materialized view,

expensive operations such as joins and aggregations do not need

to be executed.

 A lot of researches have been done in this area. Chang-Sup,

Myong and Yoon [6] proposed a new method for rewriting a given

OLAP query using various kinds of materialized aggregate views

which already exist in data warehouses. They defined the normal

forms of OLAP queries and materialized views based on the lattice

of dimension hierarchies, the Symantec information in data

warehouses. John [14] introduced the aggregating concept and the

query rewriting using materialized views on Oracle Database. He

introduced the Oracle requirements to use the query rewrite option

in Oracle 9.2. Oracle [20] introduced the data warehouse concepts,

objects and encouraged optimization on star queries. She described

the creating and maintaining materialized views and dimensions to

enhance ad-hoc query performance. She introduced the summary

advisor tool for data warehouse design recommendations. Priya

Vennapusa [21] introduced a tuning methodology and tuning roles,

he described the SQL statement processing phases in Oracle

Database and then he introduced the Oracle SQL analyzer and the

deferent types of optimizers and how the optimizer rewrites the SQL

using materialized views.

www.manaraa.com

 31

A.Y. [1] surveyed the state of the art on the problem of

answering queries using views, and synthesized the disparate

works into a coherent framework. He described the different

applications of the problem, the algorithms proposed to solve it and

the relevant theoretical results. The problem has recently received

significant attention because of its relevance to a wide variety of

data management problems. In query optimization, finding a

rewriting of a query using a set of materialized views can yield a

more efficient query execution plan. To support the separation of the

logical and physical views of data, a storage schema can be

described using views over the logical schema. Finally, the problem

arises in data integration systems, where data sources can be

described as precomputed views over a mediated schema.

Shukla [3] introduced the requirement of fast interactive

multidimensional data analysis, database systems precompute

aggregate views on some subsets of dimensions and their

corresponding hierarchies. However, the problem of what to

precompute is difficult and intriguing. The leading existing algorithm,

BPUS, has a running time that is polynomial in the number of views

and is guaranteed to be within (0.63 - f) of optimal, where f is the

fraction of available space consumed by the largest aggregate.

Unfortunately, BPUS can be impractically slow, and in some

instances may miss good solutions due to the coarse granularity at

which it makes its decisions of what to precompute. They studded

the structure of the precomputation problem and showed that under

certain broad conditions on the multidimensional data, an even

simpler and faster algorithm.

www.manaraa.com

 32

Chirkova [22] focused on the problem of automatically

reformulating a database in a way that reduces query processing

time while satisfying strong storage space constraints. In previous

work they have investigated database reformulation for the case of

unary databases. In this paper they extended this work to arbitrary

arty, while concentrating on databases with conjunctive rules. The

main result of the paper is that the database reformulation problem

is decidable for conjunctive databases.

2.2.2 Query Rewrite and XML

Internet database applications are designed to interact with

users through web pages and the common method to build web

page is through using hyperlink documents. The most popular

language to build hyperlink documents is HTML (Hypertext Markup

Language), but HTML is not suitable for structuring data extracted

form database. New language named XML (Extended Markup

Language) rises as a standard language for structuring and

exchanging data over the web. XML is used to provide information

about the structure and the data in the web pages rather than

specifying just the formatting of the data.

XML is one of the most extensively used data representation

and data exchange formats. Much of the researches on XML have

focused on developing efficient mechanisms to store, query and

manage XML data either as a part of a relational database or using

native XML stores. However, hiding sensitive data is as important

as making the data efficiently available, as has been emphasized

and studied for decades in relational databases.

www.manaraa.com

 33

There are many researches that focus on this area. Maxim

[18] introduced the techniques of rewriting a XML query into

equivalent one that can be executed faster. He devoted a

comprehensive discussion on XQuery rewriting in the presence of

data schema. Muralidhar [19] presented the XML Query Rewrite

technique used in Oracle XML DB. This technique integrates

querying XML using XPath embedded inside SQL operators and

SQL/XML publishing functions with object relational and relational

algebra. He used a common set of algebraic rules to reduce both

XML and object queries into their relational equivalent.

Sriram [26] adopted and extended a graph editing language

for specifying role-based access constraints in the form of security

views. He proposed a security annotated schema (SAS) as internal

representation for security views. He proposed secure query rewrite

(SQR) as a set of roles that can be used to rewrite the XPath to

equivalent XQuery expression against the original data. Deutsch [2]

stated and solved the query reformulation problem for XML

publishing in a general setting that allows mixed (XML and

relational) storage for the proprietary data and exploits

redundancies (materialized views, indexes and caches) to enhance

performance. The correspondence between published and

proprietary schemas is specified by views in both directions, and the

same algorithm performs rewriting-with-views, composition-with-

views, or the combined effect of both, unifying the Global-As-View

and Local-As-View approaches to data integration.

www.manaraa.com

 34

2.2.3 Enhancing Optimizer Capabilities
 A powerful feature of relational query languages is that

identities of relational algebra may be used to transform query

expressions to enhance efficiency of evaluation. Some

transformations are always valid, but whether they enhance or

degrade efficiency depends upon characteristics of the data. Other

transformations are such that their very validity depends on

characteristics of the instance. So the database optimizer has to

take a very important decision to select what is the best execution

plan for any SQL command, sometimes the decision may be difficult

or not the best choice.

The optimizer is the part of the RDBMS that creates the

execution plan for a SQL statement. An execution plan is a series of

operations that are performed to execute the statement. The

optimizer uses various pieces of information to determine the best

path such as hints supplied by the developer, statistics, information

in the dictionary, WHERE clause of the SQL statement. The

optimizer usually works in the background, however, with diagnostic

tools provided by the RDBMS vender we can see the decisions that

the optimizer makes.

The optimizer determines the least-cost plan (most efficient

way) to execute a SQL statement after considering many factors

related to the objects referenced and the conditions specified in the

query. This determination is an important step in the processing of

any SQL statement and can greatly affect execution time. Because

of that a lot of researches have been done to cover this area.

www.manaraa.com

 35

 Bryan [5] presented a thorough analysis of research into

semantic query optimization (SQO). He identified three problems

which inhibit the effective use of SQO in relational database

management systems (RDBMS). He then proposed solutions to

these problems and described first steps towards the

implementation of an effective SQO for relational databases. Chris

[7] approach governs whether the optimization yield more efficient

query processing. He used approximate functional dependencies as

the conceptual basis for this decomposition and develops query

rewriting techniques to exploit it. He presented experimental results

leading to a well-defined class of queries which improve processing

time. Elmasri and Navathe [24] introduced algorithms form query

processing and optimization and how the SQL represented as query

tree also as a query graph, then the query optimizer will select the

best execution plan. Then they discussed how to improve database

performance through database tuning.

2.2.4 Mobile Agent
 It is simply wrong to assume that mobile agents generally

improve performance. Sometimes they do, sometimes they do not.

However, the major benefits are modularity, mobility and reuse.

Mobile agents introduce an innovative approach to designing

distributed systems. They allow creating mobile components of

software programs which act autonomously. This enables

decentralization, load-balancing, self-organization and many other

new concepts. A huge effort was made in this field.

Danny [8] described the benefits of mobile agents and

considered it as a promising paradigm for the design and

implementation of distributed applications. Because of mobile agent

www.manaraa.com

 36

 nature, MA can do the computations transparently from the

user. And this feature can reduce network load, latency, and failed

operations. Rahul [23] project contributes towards an evaluation and

implements of an e-commerce application using mobile agents. The

project quantitatively evaluates various implementation strategies

and identifies various application parameters that influence

application performance. The project also provides qualitative and

quantitative comparison across three Java based mobile agent

framework. Voyager, Aglets, Concordia, for e-commerce

applications.

 William [29] discussed achievable security goals for mobile

agents, and he proposed architecture to achieve these goals. The

architecture models the trust relations between the principals of

mobile agent systems. A unique aspect of the architecture is a "state

appraisal" mechanism that protects users and hosts from attacks via

state modifications and that provides users with flexible control over

the authority of their agents. Baumann [12] described the basic

concepts of a mobile agent system, i.e., mobility, communication

and security, and he discussed different implementation techniques,

presented the decisions made in Mole and gave an overview of the

system services implemented in Mole. Mole is the first mobile agent

system that has been developed in the Java language. The first

version was finished in 1995, and since then Mole has been

constantly improved. Mole provides a stable environment for the

development and usage of mobile agents in the area of distributed

applications.

www.manaraa.com

 37

Jiao [28] applied the Mobile Agent technology in a Mobile Data

Access System framework (MAMDAS) using the Summary

Schemas Model as the underlying multi database platform. This

approach provides better performance by reducing the network

traffic and higher degree of autonomy by allowing agents to execute

without the owners interference. As witnessed by their experimental

results, the MAMDAS exhibits the following advantages compared

to the first SSM prototype: it is about 6 times faster, it supports larger

number of concurrent queries, and it demonstrates greater

scalability, portability, and robustness.

Brewington [4] discussed the strengths of mobile agents and

argued that although none of these strengths are unique to mobile

agents, no competing technique shares all of them. Next he

examined one specific information retrieval application searching

distributed collections of technical reports and considers how mobile

agents can be used to implement this application efficiently and

easily. He described two planning services that allow mobile agents

to deal with dynamic network environments and information

resources.

Moizumi [16] studied several planning problems that arise in

mobile agent information retrieval and data-mining applications. The

general description of the planning problems is as follows: We are

given sites at which a certain task might be successfully performed.

Each site has an independent probability of success associated with

it. Visiting a site and trying the task there requires time (or some

other cost matrix) regardless of whether the task is completed

www.manaraa.com

 38

 successfully or not. Latencies between sites, that is, the travel

time between those two sites also have to be taken into account. If

the task is successfully completed at a site then the remaining sites

need not be visited. The planning problems involve finding the best

sequence of sites to be visited, which minimizes the expected time

to complete the task. He named the problems Traveling Agent

Problems due to their analogy with the Traveling Salesman

Problem. This Traveling Agent Problem is NP complete in the

general formulation. A polynomial-time algorithm has been

successfully developed to solve the problem by adding a realistic

assumption to it. The assumption enforces the fact that the network

consists of subnetworks where latencies between machines in the

same subnetwork are constant while latencies between machines

located in different subnetworks vary.

Manwade [15] introduced a methodology for the creation of

parallel applications on the network. The proposed mobile-Agent

parallel processing framework uses multiple Java mobile Agents.

Each mobile agent can travel to the specified machine in the

network to perform its tasks. He also introduced the concept of

master agent, which is Java object capable of implementing a

particular task of the target application. Master agent dynamically

assigns the task to mobile agents. A prototype application has been

developed and tested.

2.2.5 Miscellaneous
 Some researchers focus on distributed queries and expect

future queries to enhance search results. Distributed queries fetch

data from multiple databases at the same time by using database

www.manaraa.com

 39

links to link databases with each other. Others tried to enhance the

execution of query by expecting the pattern of SQL command

submitted by the application. A lot of researches focused on this

field.

Graham, Peter and Gray [10] addressed the problem of

processing complex queries including quantifiers, which have to be

executed against different databases in an expanding

heterogeneous federation. They transformed queries within

wrappers to make best use of the query processing capabilities of

external databases. Their approach was based on pattern matching

and query rewriting. Ivan [11] noticed that streams of relational

queries submitted by application to database contain patterns that

can be used to predict future requests. He presented scalpel system

to detect these patterns and optimized request streams using

context-based predictions of future requests. Rosie [25] introduced

the notion of query substitution by generating a new query to replace

a user's original query for web searchers. He defined a scale for

evaluating query substitution and showed that their method

performs well at generating new queries related to the original

queries.

Popa [17] introduced the traditional query optimizers that

assume a direct mapping from the logical entities modeling the data

(e.g. relations) and the physical entities storing the data (e.g.

indexes), each physical entity corresponding precisely to one logical

entity. This assumption is no longer true in non-traditional

applications (object-oriented and semi-structured databases, data

integration), which often exhibit a mismatch between the logical

www.manaraa.com

 41

view and the actual storage of data. In addition, there is an

increased amount of redundancy, even at the logical level, that can

greatly enhance optimization opportunities, if exploited. To deal with

all this, he proposed a novel architecture for query optimization, in

which physical optimization is leveraged at the level of query

rewriting. As a consequence, the other important aspect of query

optimization, semantic optimization (that takes advantage of the

redundancy at the logical level), can be naturally incorporated. The

optimizer can then make global decisions based on both semantic

and physical knowledge, leading to plans of higher quality than

those obtainable by a traditional two-level approach.

2.3 Detailed Problem Statement
 Reading previous sections gives us and indicator of how much

work done in the area of SQL tuning. Some researchers focused on

building physical structure to enhance the query time as

materialized views, others focused on enhancing database

optimizer capabilities. But instead of sending a poor SQL statement

to database and let the RDBMS to do the entire job of parsing,

deciding what is the best execution plan for this command,

executing the command, fetching the data. Of course there are a lot

of advantages of sending a good structured and tuned SQL

statement to database, so the main idea is writing a tuned, error free

command and send it to RDBMS. Our effort will focus on receiving

any SQL command and rewriting this command to new structure

then sending the new command to RDBMS. The new command has

to be written in a way to minimize the work of database, minimize

database optimizer effort, and minimize the network roundtrips.

www.manaraa.com

 41

 One good example in our case, is the method of fetching data

from database, as we all know any database can get data from a

table in two ways, first way is sequential search (full table scan)

which means that the RDBMS will read the table record by record

until finding the required record, of course this method will take a lot

of time and I/O can take hours. The second way is binary search

which means that the RDMBS will split the table into two parts and

see the value fits in which part, then split the specified part into two

parts and see the value fits in which part, and so on, until it reaches

the required value. It is very obvious that the second way (binary

search) will take a very shorter time than the first one (sequential

search).

 So, we can write two statements to get the same results but

the database optimizer will decide to use sequential search for the

first statement and binary search for the second statement, although

the two commands will get the same result. The following example

will explain this idea.

Supposing that the following table 'EMPLOYEES' will be used

as in Figure (2-1), also there is an index created on the column

'SALARY' to make a binary search on this column instead of

sequential search.

www.manaraa.com

 42

Figure (2-1) EMPLOYEES table Structure

The test will use same SQL command with different predicate

(where clause), but the two SQL commands will get the same result.

1- The first predicate will be (WHERE SALARY*12 = 60012)

www.manaraa.com

 43

Figure (2-2) Results of first SQL command

The results show that we have employee with SSN 4901

which matches the predicate, the time consumed for this query is 3

seconds as shown in Figure (2-2). The interesting thing in execution

plan is that the RDBMS optimizer dose not decide to use the

SALARY index and makes full table scan, so a sequential table

search is used. Statistics says that we have 10767 physical reads,

which is the amount of data that the RDBMS processed and used

from hard disk.

2- The second predicate will be (WHERE SALARY =

60012/12)

www.manaraa.com

 44

Figure (2-3) Results of second SQL command

The results show that we have employee with SSN 4901

which is the same result of first command, the time consumed for

this query is 0 second (less than 0.0001 second) as shown in Figure

(2-3). Execution plan shows that the RDBMS optimizer used the

SALARY index to get the data using a binary search method.

Statistics say that we have 0 physical reads so the amount of data

processed is less than one block. Comparing the two results

ensures that there is a performance problem that can be avoided if

the SQL command is written in proper way.

www.manaraa.com

 45

 The previous example shows that the same data can be

populated from database with different ways of writing SQL

statement especially the predicate (WHERE clause) of the

statement. Also the predicate can be used in any SQL statement

like DML commands (INSERT, UPDATE, DELETE), so the

enhancement will reach all types of SQL statements submitted from

application to RDMBS to handle. Rewriting the SQL statements to

use the capabilities of the database and to use the indexes built in

the database efficiently for sure will enhance the overall

performance of the application.

2.4 Problem Still Exists
 From the previous sections we can notice that most

researches focused on enhancing the performance of SQL

commands without affecting the command itself, they accepted the

SQL command as it is with its weakness and poor writing, then

started to enhance the performance of executing these commands.

The core of this thesis is different, in this thesis we will dig the SQL

command and its structure to see the area of weakness, then rewrite

it again eliminating the weakness areas before sending it to RDBMS

to execute it.

www.manaraa.com

 46

Chapter Three
Proposed System Design

3.1 Overview
The goal of this thesis is to control the impact that the

execution of large queries has on the performance of database. The

proposed approach is to find a better execution plan for SQL

statement before accessing the database, and if there is another

statement that gives better execution plan than the previous one

which will be replaced by the new one. As we know each database

system has a built in feature called optimizer, the purpose of the

optimizer is selecting the best execution plan for any statement. The

proposed approach focuses on breaking up the SQL statement into

pieces and concentrates on the WHERE clause to see if we can

rewrite the WHERE clause in a different way with better execution

plan before sending the original statement to database optimizer.

3.2 Optimizer
 The optimizer is a part of any database system that creates

the execution plan for a SQL statement. An execution plan is a

series of operations that are performed to execute the statement.

The optimizer uses various pieces of information to determine the

best path:

• Hints supplied by the developer.

• Statistics.

• Information in the dictionary.

• WHERE clause.

The optimizer usually works in the background. However, with

diagnostic tools provided by database vender, you can see the

decisions that the optimizer makes.

www.manaraa.com

 47

The optimizer determines the least-cost plan (most efficient

way) to execute a SQL statement after considering many factors

related to the objects referred to and the conditions specified in the

query. This determination is an important step in the processing of

any SQL statement and can greatly affect execution time. The

optimizer may not make the same decisions from one database to

another or from one version of the same database to another

version. In recent versions, the optimizer may make different

decisions because better information is available [21].

Optimizer Operations: For any SQL statement processed by the

database server, the optimizer performs the following operations as

shown in Figure (3-1) [21]:

Figure (3-1) Optimizer Operations

• Evaluation of expressions and conditions: The

optimizer first evaluates expressions and conditions

containing constants as fully as possible.

www.manaraa.com

 48

• Statement transformation: For complex statements

involving, for example, correlated subqueries or views, the

optimizer might transform the original statement into an

equivalent join statement.

• Choice of optimizer approaches: The optimizer

determines the goal of the optimization.

• Choice of access paths: For each table accessed by the

statement, the optimizer chooses one or more of the

available access paths to obtain table data.

• Choice of join orders: For a join statement that joins more

than two tables, the optimizer chooses which pair of tables

is joined first, then which table is joined to the result, and

so on.

• Choice of join methods: For any join statement, the

optimizer chooses an operation to use to perform the join.

To choose an execution plan for a join statement, the

optimizer must make these interrelated decisions:

• Access paths: For simple statements, the optimizer must

choose an access path to retrieve data from each table in

the join statement. Access paths are: full table scans, rowid

scans, index scans, cluster scans, hash scans

• Join method: To join each pair of row sources, database

optimizer must perform a join operation. Join methods

include nested loop, sort merge, cartesian, and hash joins.

• Join order: To execute a statement that joins more than

www.manaraa.com

 49

• two tables, database optimizer joins two of the tables and

then joins the resulting row source to the next table. This

process is continued until all tables are joined into the

result.

3.3 SQL Statement Processing Phases

 A good understanding of SQL processing is essential for

writing optimal SQL statements. In SQL statement processing, there

are four important phases: parsing, binding, executing, and fetching.

As shown in Figure (3-2) [21]:

Figure (3-2) SQL Statement Processing Phases

The reverse arrows indicate processing scenarios (for

example, Fetch—(Re)Bind—Execute—Fetch). The Fetch phase

applies only to queries and DML statements with a returning clause.

www.manaraa.com

 51

3.3.1 Parse Phase
 Parsing is the first stage in the processing of a SQL statement.

When an application issues a SQL statement, the application makes

a parse call to the RDBMS. During the parse call, the RDBMS:

1- Checks the statement for syntactic and semantic validity.

2- Determines whether the statement has privileges to run it.

3- Allocates a private SQL area in memory for the statement.

The RDBMS first checks whether there is an existing parsed

representation of the statement in the cache. If so, it uses this

parsed representation and runs the statement immediately. If not,

the RDBMS generates the parsed representation of the statement,

and allocates a shared SQL area for the statement in the cache and

stores its parsed representation there. A parse operation allocates

a shared SQL area for a SQL statement. After a shared SQL area

has been allocated for a statement, it can be run repeatedly without

being reparsed. Both parse calls and parsing can be expensive

relative to execution, so they should be minimized. Ideally, a

statement should be parsed once and executed many times rather

than reparsing for each execution.

3.3.2 Bind Phase
 During the bind phase, The RDBMS checks the statement for

references of bind variables, then assigns or reassigns a value to

each variable. When bind variables are used in a statement, the

optimizer assumes that SQL sharing is intended and that different

invocations should use the same execution plan. If different

www.manaraa.com

 51

 invocations of the SQL would significantly benefit from different

execution plans, then using bind variables may adversely affect the

performance of the SQL statement.

3.3.3 Execute Phase
The RDBMS uses the execution plan to identify the required

rows of data from the data buffers. Multiple users can share the

same execution plan. The RDBMS performs physical reads or

logical reads/writes for DML statements and also sorts the data

when needed. Physical reads are disk reads; but logical reads are

blocks already in memory of the server. Physical reads are more

expensive because they require I/O from disk.

3.3.4 Fetch Phase
The RDBMS retrieves rows for a SELECT statement during

the fetch phase. Each fetch typically retrieves multiple rows, using

an array fetch because there is minimum number of records to be

selected in each fetch and it is equal to RDBMS block size, this may

enhance the performance because the same data may be selected

next time by the same user or different users.

3.3.5 Query Execution Plan
The output of a query optimizer for a declarative query

statement is called a Query Execution Plan (QEP). The structure of

a QEP determines the order of operations for query execution. The

QEP is typically represented using a tree structure where each node

represents a physical database operator (e.g. nested loop join, table

scan etc). Multiple plans may exist for the same query and it is a

query optimizer’s top priority to choose an optimal plan. To

supplement the QEP, most query optimizers produce performance

related information such as cost information, predicates, selectivity

www.manaraa.com

 52

 estimates for each predicate and statistics for all objects

referenced in the query statement. Figure (3-3) shows an example

of nested loop join statement.

Figure (3-3) Nested loops join

 In nested loop joins one of the tables defined as outer table

(driving table), the other table called inner table, and for each row in

the outer table all matching rows in the inner table are retrieved.

Another way to join two tables is a sort-merge joins. Figure (3-4)

shows an example of sort-merge joins.

www.manaraa.com

 53

 Figure (3-4) Sort-Merge joins

 In sort-merge joins, the two row sources are sorted on the

values of the columns used in the join predicate. If a row source has

already been sorted in a previous operation, the sort-merge

operation skips the sort on that row source. Sorting could make this

join technique expensive, especially if sorting cannot be performed

in memory. The merge operation combines the two sorted row

sources to retrieve every pair of rows that contain matching values

for the columns used in the join predicate.

 Nested loop joins used when we have small number of rows

that have a good driving condition between the two tables. But a

sort-merge joins used for large amounts of data or the join condition

between two tables is not an equijoin. From these two examples we

find that, we can rewrite the SQL statement (change the original

statement from old syntax to new syntax) and use optimizer hints

www.manaraa.com

 54

 before sending these statements to optimizer. If we rewrite the

statement in proper way, we can make the database optimizer take

a good decision and the best execution plan for executing the

statement.

3.4 The Proposed System Design
Designing a large system to handle real time problems is a

challenge and needs a lot of attention, because you have to

compromise between the needs of each requirement. Designing

large systems always starts with decomposing it into sub-systems

to provide related services, and establishing a framework for sub-

system control and communication, so this decomposition may has

negative effect on performance. And in contrary for real time

systems that puts performance and response time in the first stage

by building large-grain rather than fine-grain components to reduce

the number of controllers between sub-systems and eliminate

communication time between sub-systems, so being in the middle

is always the hardest.

Another issue arises in the scene, mobility of the system; we

need this system to be an intelligent mobile agent, so it has to be

independent, self-governing and self-determining to solve the

problems. This mobility forces the agent to own his dictionary and

Meta data (repository) about running database, and hold it when

traveling from system to another. So this Meta data has to be

dynamic, light, easy to manage and with minimal overheads.

www.manaraa.com

 55

The proposed agent will be implemented using JAVA

language as an interface and will be tested by using ORACLE

database as a back end; the implementation will follow these steps,

as in the Figure (3-5) taking into consideration that the repository is

already built and will be configured:

1. First the agent connects to target database and consolidate its

repository with target database to get any changes or

modifications, then the agent waits for any SQL command

from application layer, it expects that the command is not error

free and there may be syntax problems with command. The

agent checks the syntax of the command to report any error if

Figure (3-5) Proposed System

Design

www.manaraa.com

 56

2. the command has any thing conflicting with the dictionary that

has been validated with running database. If the command is

validated correctly it will be passed to the second stage.

3. The agent analyzes SQL command to see which

recommendation it will take from recommendation dictionary

to tune this command. Also the agent may find that the SQL

command does not need tuning in this step.

4. The agent fetches the recommendation dictionary; basically

this dictionary contains rules for writing the SQL command in

tuned syntax. If there is any rule that satisfies the SQL

command the agent will send the command to rewrite stage,

else the agent will leave the command as it is.

5. The agent will leave the SQL command as it is if there is no

rule or recommendation that satisfies this command.

6. Rewriting stage is the most complex stage because the agent

is going to restructure the SQL command with new syntax

taking two things in its consideration, the first one is rewriting

the command with better performance syntax after getting the

help from recommendation dictionary, the second one is

resulting the same data (output) as previous old command.

7. The agent will test the new SQL command and compare it with

old one to see difference in time, IO, network round-trips,

execution time and many. These results will be saved in a

statistics dictionary to measure the overall performance of the

agent in a real live system.

www.manaraa.com

 57

3.5 Detailed System Design
In this section we will go deeply in agent design describing

each component, its functionality and how these components

communicate with each other. Neither large-grain components nor

fine-grain components are going to be used in agent design, Agent

components are going to be in the middle range as possible. Three

types of diagrams are going to be used in this section; first, use-

case diagram will describe the interaction between actors with use-

cases. Second, sequence diagrams are used to add information to

a use-case and show how the actors are involved in the interaction.

Third, class diagram shows the structure of the agent as classes

and relations between these classes.

The system (agent) use-cases and its interaction with actors

are shown in Figure (3-6).

www.manaraa.com

 58

Figure (3-6) System Use-Case Diagram

www.manaraa.com

 59

Figure (3-6) shows us three actors:

1- Agent actor as a primary player in the system which is going

to instantiate most of the system use-cases, all of system

operations are going to start from this actor.

2- RDBMS actor to represent the database that the agent is

going to handle, then the agent will execute SQL commands

in this database before and after rewriting.

3- OS Files actor to represent the agent dictionary that will be

used as a Meta data for the agent wherever the agent travels

between hosts.

Actors communicate with use-cases; use-cases are described

as follows:

1- Login use-case to establish connection between our system

(agent) and database using authorized username, password

and correct connection string.

2- Validate dictionary use-case is going to check if the agent has

the correct and matched dictionary as the database, if the

agent has dictionary (Meta data) different than database, this

use-case will remove and create the dictionary again then

save this dictionary in the operating system files.

3- Check syntax use-case will check if the SQL command

received has any syntax error before proceeding for tuning this

command, and it will report an error if the command is not

valid.

4- Check for rewrite use-case will examine the SQL command

to see if there is any condition that exists for rewriting the

command. These conditions are described in the use-cases

that extend from this use-case like checking if the SQL

www.manaraa.com

 61

5- command has mathematical operations, the SQL command

has implicit type conversion, the SQL command does not use

indexes, or the join condition is not written in a correct format.

All of these conditions will make the SQL command run slowly,

it needs to be rewritten.

6- Rewrite use-case will rewrite the SQL command if any

command has any condition described in previous use-case.

7- Compare results use-case will get all of metrics and statistics

for old SQL command (before rewriting) and new SQL

command (after rewriting) to show the difference between

them and highlight the gain that the agent made by rewriting

the SQL command.

8- Save results use-case will store the metrics resulted from

pervious use-case to file system for future analysis.

Once the interactions between the software system that is

being designed and the system's environment have been defined,

we can use this information as a basis for designing the system

architecture. From this information we can introduce a class diagram

to show the overall system structure as shown in Figure (3-7):

www.manaraa.com

 61

System (agent) starts from SQLApplication class which is the

initiation method to start the agent. Form LogonFrame class the

agent gets user name and password from administrator and tries to

connect to database using the ControllerClass class which controls

the communication with database. The MainFrame class has as a

major role in the system because it is going to handle most of the

agent work hand by hand with ControllerClass.

Figure (3-7) System Class Diagram

www.manaraa.com

 62

Sequence diagrams are models of the use-cases, for each

mode of interaction between actor and use-case, a sequence

diagram takes place. The following diagrams will illustrate the

interaction for each use-case described before.

3.5.1 Login Use-case
Figure (3-8) shows the interaction of the first use-case (login

use-case). As we can see agent starts the login process by putting

username and password to LogonFrame, then this class asks the

ControllerClass to connect to database and check if this login is

valid or not, if it is not valid an error message will come into sight

else the LogonFrame class will send the control to MainFrame

class to continue agent process.

3.5.2 Validate Dictionary Use-case
Figure (3-9) shows the interaction of the second use-case

(validate dictionary use-case). In this use-case the agent mainly

does two things, first one is building the dictionary by asking this

from MainFrame class, then MainFrame class sends this request

Figure (3-8) Login Sequence Diagram

www.manaraa.com

 63

to ControllerClass which in turn gets the dictionary

information from database and saves it to operating system files to

be traveled with agent wherever the agent goes. The second issue

is deleting the dictionary by ControllerClass if there are any new

changes in the database to be reflected to agent dictionary when

the agent builds it again.

3.5.3 Check Syntax Use-case
Figure (3-10) shows the interaction of the third use-case

(check syntax use-case). In this use-case the agent sends check

syntax request to MainFrame class, then MainFrame class reads

the SQL statement and checks if it has correct tables name,

columns name, and if it has correct SQL statement structure, if it is

not, an error message will be shown, and if the SQL statement has

no errors the agent will pass it to next use-case (check for rewrite).

Figure (3-9) Validate Dictionary Sequence Diagram

www.manaraa.com

 64

3.5.4 Check for Rewrite Use-case and Rewrite Use-
case

Figure (3-11) shows the interaction of the fourth and fifth use-

cases (check for rewrite use-case and rewrite use-case). In check

for rewrite use-case the agent sends check for rewrite request to

MainFrame class, and then this class does the job. It checks if:

- The SQL statement has mathematical operations that

prevent index usage

- SQL statement has implicit or explicit type conversion.

- Does SQL statement use the indexes properly?

- The SQL statement has proper written join condition.

If the statement has one of these conditions, the agent will

decide to rewrite it so the agent sends request to MainFrame class

to rewrite the SQL statement and remove the condition that makes

the SQL statement slow.

Figure (3-10) Check Syntax Sequence Diagram

www.manaraa.com

 65

3.5.5 Compare Results Use-case
Figure (3-12) shows the interaction of the sixth use-case

(compare results use-case). In this use-case the agent asks the

MainFrame class to get statistics about old SQL statement (before

rewriting) and statistics about new SQL statement (after rewriting),

and compare these statistics with each other to see the difference

between these results. Statistics contain a lot of metrics about SQL

statements like estimated time to execute the statement, actual time

for executing the statement, number of bytes and blocks read from

database, number of network round-trips between client and server

Figure (3-11) Check for Rewrite Sequence Diagram

www.manaraa.com

 66

, cost of statement, execution plan for statement, and others.

3.5.6 Save Results to History Use-case
Figure (3-13) shows the interaction of the seventh use-case

(Save results to history use-case). In this use-case the agent asks

the MainFrame class to save the statistics about the old and new

SQL statements in operating system files to be used in the future

and to be used for statistical reports generated from the agent. The

statistics are saved into files because the agent may need them

when they travel to another machine.

Figure (3-12) Compare Results Sequence Diagram

www.manaraa.com

 67

3.6 Test Case Design
The ultimate goal of this thesis is to put the agent in real life

environment and get the results that we expect. But first we have to

put it in a test environment and see how the agent behaves. So we

created a test case for this agent which includes an information

system with a lot of heavy and complex SQL commands. The test

case inspired from systems that can handle a large number of

concurrent users efficiently, and can store, retrieve information

competently like conference systems that serve public users from

the internet as Skype system or Yahoo Messenger system, these

systems do not serve thousands or few of millions of concurrent

users but it handles tens of millions and sometimes more of

concurrent users. Also the system has to store all details about

conferences, information sent between conference parties, and

statistics about each conference.

Figure (3-13) Save Results to History Sequence Diagram

www.manaraa.com

 68

Figure (3-14) shows database design for a conference system

that will be used to test the agent.

As shown in Figure (3-14), we have COUNTRIES relation to

store the ids, names and codes of client country with country id as

a primary key. The CLIENTS relation to store information about

clients like name, gender, phone, and more, the CLIENTS relation

has client id as primary key and country id as foreign key to

COUNTRIES relation. The CONFERENCES relation stores

information about each conference done by any client like

conference start date and time, conference end date and time, caller

id, and called id. The CONFERENCES relation has conference id

as primary key and it has two foreign keys to CLIENTS relation, first

Figure (3-14) Database Design for Conference System

www.manaraa.com

 69

 one for caller id and second one for called id. The

CONFERENCE_DETAILS relation stores information about

conference lines as the text sent between each clients, status of

each message sent, and if the message received or not. This

relation has a sequence as primary key; it has foreign key to

CONFERENCES relation and two foreign keys to CLIENTS relation

one as sender and the other as receiver.

www.manaraa.com

 71

Chapter Four
Implementation and Experimental Work

4.1 Overview
 In the previous chapter, the researcher developed agent

design and use-cases to implement the scenarios that may happen

when receiving SQL commands from clients. In this chapter, the

researcher will present the architecture of the implemented query

rewrite mobile agent, where those use-cases are applied. The

mobile agent was developed using Java language as an interface

and Oracle database as a back end to receive the SQL commands.

The main features of the agent are efficiency, ease of use and

adaptability with various types of operating systems with different

kinds of databases running on those machines.

4.2 Metrics and Statistics
Monitoring for performance requires certain information that

goes beyond statistics. To determine whether a particular statistic is

important, the researcher needs to know how much it has changed

over a certain period of time. To be proactive, the researcher needs

to be notified when certain conditions exist (for example when

system response time approaches the agreed maximum). To

diagnose performance issues, the researcher needs to know what

has changed. Metrics and statistics provide this information. A

metric is a timed rate of change in a cumulative statistic (for

example, physical reads per second, logical reads per second).

Statistics are counters of events that happen in the database in a

raw data format.

www.manaraa.com

 71

Figure (4-1) Metrics and Statistics

The main benefit of keeping metrics is that the data is readily

available when a component needs to compute the rate of change

of some activity. But with statistics only the researcher had to

capture statistics before and after running SQL command to

compute the changed rate for a particular base statistic. With

metrics, all the researcher needs to do is to run the SQL command

and select the corresponding metrics as illustrated in Figure (4-1).

 Although the metrics can give you an idea of the trend for

particular statistics, but they do not tell you if a particular bottleneck

is affecting the whole system or if it is just localized. As an example,

you can observe a high metric rate, but this sudden increase could

be localized to only one or two sessions in your system. In this case,

it might not be worth investigating the issue. However, if the sudden

increase is generalized to the whole system, you need to investigate

further. The metrics can alert you to potential problems. By drilling

down using statistics, you can clearly determine whether there really

is a problem[21].

www.manaraa.com

 72

4.3 Access Paths
Access paths are the ways in which data is retrieved from the

database. Any row can be located and retrieved with one of the

methods determined by RDBMS optimizer. Access paths are

revealed and used by database optimizer, access paths can be one

of these:

1- Full table scan: the database will access the table row by

row, this operation may take a long time and a lot of physical

reads, but it is useful when SQL statement access a large

portion of the table like decision support system (DSS) that

access a large number of rows in each statement to generate

statistical reports.

2- ROWID scan: each record in a table has a physical pointer

called ROWID, which contains the physical address of the

record as hard disk number, file number, partition number,

block number and record number. If database optimizer has

the ROWIDs for certain records, it will use them to get the

specified rows.

3- Index scan: using the index to get ROWIDs of the selected

records may make the SQL statement very fast and efficient

especially when SQL statements retrieve a small subset of

table rows. OLTP applications which consist of short running

SQL statements with high selectivity are characterized by

using index scan access path.

The database optimizer chooses the access path based on

the following factors:

 Available access paths for the statement

 Estimated cost of executing the statement, using each access

path or combination of paths

www.manaraa.com

 73

To choose an access path, the optimizer first determines

which access paths are available by examining the conditions in the

statement's WHERE clause and it's FROM clause. The optimizer

then generates a set of possible execution plans using available

access paths and estimates the cost of each plan, using the

statistics for the index, columns, and tables accessible to the

statement. Finally, the optimizer chooses the execution plan with the

lowest estimated cost. Choosing the access path, the optimizer is

influenced by the following:

 Optimizer hints: The optimizer's choice among available

access paths can be overridden with hints

 Old statistics: For example, if a table has not been analyzed

since it was created, and if the table is small, then the

optimizer uses a full table scan.

Full table scan reads all rows from a table and filters out those

that do not meet the selection criteria (WHERE clause). During a full

table scan, all blocks in the table are scanned. Each row is examined

to determine whether it satisfies the statement's WHERE clause.

When performing a full table scan, the blocks are read sequentially.

Full table scans are cheaper than index range scans when

accessing a large fraction of the blocks in a table (more than 75% of

the table). They are cheaper because full table scans can use larger

I/O calls; making fewer large I/O calls is cheaper than making many

smaller I/O calls. The database optimizer uses a full table scan in

each of the following cases:

www.manaraa.com

 74

 Lack of index: If the query is unable to use any existing

indexes, then it uses a full table scan. For example, if there is

a function used on the indexed column in the query, the

optimizer is unable to use the index and instead uses a full

table scan.

 Large amount of data: If the optimizer thinks that the query

will access most of the blocks in the table, then it uses a full

table scan, even though indexes might be available.

 Small table: If the entire table contains few numbers of

blocks, then a full table scan might be cheaper because this

can be read in a single I/O call.

The ROWID of a record specifies the physical location of the

row (data file, data block, as well as the location of the row in that

block). Locating a row by specifying its ROWID is the fastest way to

retrieve a single row, because the exact location of the row in the

database is specified. To access a table by ROWID, the optimizer

first obtains the ROWIDs of the selected rows, either from the

statement’s WHERE clause or through an index scan of one or more

of the table’s indexes. The database then locates each selected row

in the table based on its ROWID. This is generally the second step

after retrieving the ROWID from an index. The table access might

be required for any columns in the statement that are not present in

the index. Access by ROWID does not need to follow every index

scan. If the index contains all the columns needed for the statement,

then table access by ROWID might not occur.

www.manaraa.com

 75

 In index scan method, the indexed column values specified by

the statement are used to retrieve the row. An index scan retrieves

data from an index based on the value of one or more columns in

the index. To perform an index scan, the database searches the

index for the indexed column values accessed by the statement

using binary search method. If the statement accesses only columns

of the index, then the database reads the indexed column values

directly from the index rather than from the table. The index contains

not only the indexed value but also the ROWIDs of rows in the table

having that value. Therefore, if the statement accesses other

columns in addition to the indexed columns, then the database can

find the rows in the table by using a table access by ROWID.

4.4 Use-case Implementation
In this section the researcher will describe each use-case mentioned

in the previous chapter in details, flowchart to describe the

implementation, algorithms used to implement them, and also the

pseudo code used to get deep understanding of each use-case.

4.4.1 Login Use-case
 The login use-case will handle the connection between the

agent and the database, in our case the agent will be implemented

using Java language and the database will be Oracle database.

Oracle supports many types of Java connection such as Thin

connection, OCI (Oracle Call Interface) connection, and Lite

connection. Thin connection is the most popular type of connections

because it is portable, operating system independent, and fully

implemented in Java. OCI connection is not portable connection and

you have to install OCI driver in each machine you are going to use,

and this is against the agent portability feature. OCI driver has a

www.manaraa.com

 76

feature that it can connect to database using network protocols other

than TCP protocol, but our agent interested in TCP protocol

because it is the protocol which dominates other network protocols.

The Lite connection is implemented by Oracle to support Oracle Lite

Database which is a type of database installed in mobile devices like

PDAs and Palms. So the agent decided to use Thin connection

because it is the most connection type suitable for it.

 Thin connection requires three variables, the first one is the

user name of database schema, the second one is the password,

and the third one is the JDBC (Java DataBase Connectivity) which

consists of database server IP address or host name, the network

port is used by database server to open the connection, and the

database name to connect to, because the database server may

contain more than one database. Figure (4-2) shows the connection

dialog used by the agent which contains three input fields as

described above.

Figure (4-2) Login Dialog

www.manaraa.com

 77

 The agent will receive the connection information (Username,

Password), then the agent will try to connect to database using

these variables, if it succeeds, the control will be passed to

MainFrame screen, otherwise an error message will be displayed to

inform that we have invalid username or password. As illustrated in

Figure (4-3) the login sequence is described in flowchart diagram.

Figure (4-3) Login Flowchart Diagram

The Pseudo code illustrated below shows how the login use-

case works:

get Username

get Password

connect to database

if successful

go to MainFrame

else

www.manaraa.com

 78

show error message

end if

4.4.2 Validate Dictionary Use-case
 Agent must be portable with fast response, so all information

needed for it must be packaged with the agent. Dictionary of the

database used in SQL commands is highly used and needed to

check the syntax of the command and to do the rewrite of the

required commands. So when starting up the agent and after login

to database, the agent checks if the dictionary exists, if not, the

agent builds the dictionary then loads it to agent buffer. If the

dictionary exists just load it to agent buffer.

 Dictionary must travel with agent as a Meta data for existing

database, so the best way to insure portability of this Meta data is to

build it and store it in XML format. The XML file shown in Figure (4-

4) gives detailed information about the dictionary of the test schema

the researcher is going to use in this thesis. As shown in Figure (4-

4) the root element of the XML file is <DBdictionary> which contains

all other elements, then the element <tables> which contains all

tables of the schema, and each <table> element contains <column>

element to store the name, type, length, and scale of the column

using <name>, <type>, <length>, and <scale> elements in

sequence. Some elements has attributes like <table> element has

"name" as an attribute to store the name of the table, and <column>

element has "id" as an attribute to store column identifier.

www.manaraa.com

 79

Figure (4-4) Dictionary XML File

 To generate the dictionary XML file, the agent looks for this

file first if it exists or not, if the file exists the agent will read this file

and load the buffer with Meta data. But if the file does not exist, the

agent will read the database to get tables names and columns

names and other information to generate the XML file and load it in

the buffer. Figure (4-5) illustrates the flowchart of the use-case.

www.manaraa.com

 81

Figure (4-5) Validate Dictionary Flowchart Diagram

 The Pseudo code for validating dictionary use-case is shown

as follows:

If dictionary does not exist

Initialize table array

Initialize column array

Open XML file

Select table's information

www.manaraa.com

 81

Select column's information

Write information to XML file

Fill information to arrays

Close connection and XML file

else

Initialize table array

Initialize column array

Read XML file

Fill information to arrays

Close connection and XML file

 end if

4.4.3 Check Syntax Use-case
 Rewriting SQL statement and getting better execution time

requires that the SQL statement must be written with correct syntax,

so before sending SQL statement to rewrite process, the agent has

to insure that the statement has no syntax errors. Agent has two

types of error checking, the explicit type (offline) which requires the

user to ask for syntax checking, and implicit type (online) which is

done automatically without user intervention.

 To see the difference between online and offline syntax

checking we have to take a few description of the agent interface.

The interface is built to see the behavior of the agent in real word

and get output numbers from SQL command processed by the

agent. Agent has some options to interact with it in spite of all

processes that are done internally. As seen in Figure (4-6) we have

two tabs SQL Command and SQL Results. The first tab (SQL

Command) is divided into two parts, the left part for old SQL

www.manaraa.com

 82

 command with its own metrics and the right part with new SQL

command and new metrics, metrics are shown below the SQL

command area like (Real Time, Position, Cost, …). The second tab

(SQL Results) shows us the execution output of the old command

compared with the new command just to be sure that rewriting the

command did not change the original output of the command. The

toolbar of the interface contains three buttons, the first one to check

the syntax, the second one to rewrite the SQL command, and the

third one to compare the old command with new command and fill

out the metrics for both commands.

Figure (4-6) Agent Interface

 From Figure (4-6) the researcher can see the online syntax

checking. If a command with wrong table name is written, the agent

will instantly display the table name in red after proceeding to next

word, as in Figure (4-6) the user wrote the table name (cliens)

instead of (clients), so the agent immediately formatted the error.

www.manaraa.com

 83

 Figure (4-7) illustrates online syntax checking but this time with

wrong column name (cl_id) instead of (cln_id) which is the correct

column name.

Figure (4-7) Agent Online Syntax Checking

 From Figure (4-8) we can see the offline syntax checking. If

we wrote a command then we can check the syntax by pressing the

button (Check Syntax) and a message will be displayed to inform us

if the syntax is correct or not.

www.manaraa.com

 84

Figure (4-8) Agent Offline Syntax Checking

To check the syntax of the command, the agent has to

tokenize the statement into tokens then check each token if it is in

correct position and spelling like reserved words such as (select,

from, where), and to check for columns names also the tables

names if exist in the dictionary which is built in previous process.

Figure (4-9) illustrates a flowchart of the processes followed by

pseudo code that implements this use-case.

www.manaraa.com

 85

Figure (4-9) Check Syntax Flowchart

The Pseudo code for checking syntax use-case is show as

follows:

Tokenize the statement

Get next token

If the token is (*)

Get next token

else

www.manaraa.com

 86

 Separate each column by (,)

 Compare column with dictionary

 If column not exist

 Display error message

 end if

 Get next token

 Separate each table by (,)

 Compare table with dictionary

 If table not exist

 Display error message

 end if

end if

4.4.4 Check for Rewrite Use-case and Rewrite Use-
case
 Both use-cases are considered as the heart of the agent,

because they are the most important processes which have to be

done by the agent. So the researcher divided these processes to

sub-processes to be easier in implementation and tracking. As

mentioned in chapter 3 there are four use-cases which extend check

for rewrite use-case and the researcher is going to describe the

implementation of each one in details.

4.4.4.1 Check for Calculation
 In this sub-process the agent searches for mathematical

operations done by SQL statement, the agent is interested in the

mathematical operations done in the left side of the WHERE clause

of the SQL statement, because if we use any mathematical

operation with the column the database management system will

ignore the index created in this column and will decide to use

www.manaraa.com

 87

 sequential search. But if the statement has any operation in the

right side, the agent will ignore it and will consider it as a passed

statement from this sub-process.

 The algorithm of this sub-process is simple, the agent will

divide the SQL statement into tokens if it is not tokenized before and

will search at the token after the WHERE clause, if there is any

mathematical operation like addition, subtraction, multiplying,

division (+, -, *, %) the agent will search for the equal sign (=), and

any operation in the left side of the equal sign will be moved to the

right side of the equal sign after converting it to opposite operation

so the addition in left side will be subtraction in right side, multiplying

will be division and so on, for example if we have WHERE clause

like this:

 WHERE (((CLN_ID + 5 / 2) – 3) * 4) = 232323

It will be converted to this:

 WHERE CLN_ID = ((((232323 / 4) + 3) * 2) - 5)

Figure (4-10) shows us how the agent converts a simple

mathematical operation, and Figure (4-11) shows us a more

complex operation, we can see the differences be comparing the old

section of the SQL statement with the new section of SQL

statement.

www.manaraa.com

 88

Figure (4-10) Simple Operation Rewriting

Figure (4-11) Complex Operation Rewriting

Figure (4-12) illustrates a flowchart of this sub-presses

followed by the pseudo code to implement it.

www.manaraa.com

 89

Figure (4-12) Check for Calculation Flowchart

The Pseudo code is shown as follows:

Tokenize the statement

Get next token

If the token is (WHERE)

www.manaraa.com

 91

Get next token

Get left side

While (left side) loop

 If operation exists

 Convert the operation

 Write it to right side

 End if

End loop

 End if

4.4.4.2 Check for Type Conversion
 One of the steps that has to be done in designing the

application is defining the type of each column in each table used in

the schema, the main data types in database are (NUMBER,

VARCHAR, VARCHAR2, DATE, CLOB, BLOB) and others, each

type is used in a different way for example when using NUMBER

type the value will be mentioned without any extra letters, but when

using VARCHAR, VARCHAR2 or DATE the value should be

surrounded by single quote ('). For example the WHERE clause will

be like this if we use number (WHERE cln_id = 232323) but if we

use names the WHERE clause should be like this (WHERE

cln_fname = 'ali').

 Some times we need to convert the data from type to type, like

converting the number to character or character to date and vise

versa, the conversion process can be done by using predefined

function in database like (TO_CHAR, TO_NUMBER, TO_DATE)

and others. When we use any function to convert the type in

WHERE clause, the index created in this column will be ignored and

www.manaraa.com

 91

 the database will make sequential search in the table to get the

required row, the interesting thing is some times the database

management system do implicit type conversion if there is mismatch

between the two parts of the WHERE clause, for example if the

WHERE clause is written like this (WHERE cln_phone =

9615811581) and the cln_phone column is defined in database as

VARCHAR2, the database management system will convert it to

(WHERE TO_NUMBER(cln_phone) = 9615811581) and this step

will prevent using the index created in this column, but if the WHERE

clause is written like this (WHERE cln_phone = '9615811581')

before reaching the database, the database will use the index

created in cln_phone column.

 The agent has to track this possibility of type conversion and

rewrite the SQL command to be free of type conversion functions.

The algorithm used in this process is searching for WHERE clause

used after tokenizing the statement if not tokenized before, then find

the column type in the WHERE clause from agent dictionary, and if

the column type does not match with the right side of the WHERE

clause, the agent will match it, Figure (4-13) shows us an example

of rewriting the statement because cln_phone is defined in database

as VARCHAR2 and used as a NUMBER in the WHERE clause

(without single quotes), so the agent surrounds the right side value

with single quotes to be matched with cln_phone type.

www.manaraa.com

 92

Figure (4-13) Type Conversion Rewriting

Figure (4-14) illustrates a flowchart of type conversion sub-

process and the pseudo code to implement it.

The Pseudo code is show as follows:

Tokenize the statement

Get next token

If the token is (WHERE)

Get next token

Get left side and right side

While (left side has column) loop

Get column type

 If (type not matches)

 Convert the right side

 End if

End loop

 End if

www.manaraa.com

 93

Figure (4-14) Check for Type Conversion Flowchart

4.4.4.3 Check for Index Usage
 Using functions are very common procedure when writing

SQL statements especially with new versions of database that

comes with rich predefined functions and built-in procedures that

help the programmer to immediately use these options, but using

function in WHERE clause of the statement will prevent index usage

and will make sequential search. The agent will try to catch these

functions and remove it from the left side of the WHERE clause then

www.manaraa.com

 94

 change the right side to match the original statement. For example

if the WHERE clause of the statement use the function TO_CHAR

to change the date format of a column, the index of this column will

not be used as shown in left side of Figure (4-15), but if we change

the default format of the date by the command (alter session) then

we can write the statement without using the function TO_CHAR

and this will make use of the index.

 The agent will try to do this process, the algorithm is similar to

previous section but with small changes, the agent will tokenize the

statement and search for WHERE clause, then search if there are

functions used with any column then try to change the statement

without this function after setting the default date format.

Figure (4-15) Index Usage Rewriting

www.manaraa.com

 95

Figure (4-16) illustrates a flowchart of index usage sub-

process followed by pseudo code to implement it.

Figure (4-16) Check for Index Usage Flowchart

The Pseudo code is shown as follows:

Tokenize the statement

Get next token

If the token is (WHERE)

Get next token

Get left side and right side

While (left side has function) loop

www.manaraa.com

 96

Remove the function

 Change session settings

 Write command with new settings

End loop

 End if

4.4.4.4 Check for Join
The RDBMS can join only two row sources at a time. Join

operations (such as nested loops and sort-merge) are used as

building blocks if the join statement contains more than two tables.

Except for the limitations that are inherent in each kind of join

statement, there are no restrictions on the combination of join

operations involved in a join with more than two tables.

 A join statement is a select statement with more than one table

in the FROM clause. A join predicate is a predicate in the WHERE

clause that combines the columns of two of the tables in the join. A

non join predicate is a predicate in the WHERE clause that

references only one table. As in the example below the WHERE

clause (WHERE CLN.CLN_ID = CNF.CNF_CLN_ID_CALLER) and

(AND CNF_CNF_ID = CNFD.CNFD_CNF_ID) are join predicate

but (AND CLN_CLN_ID = 2323) is non join predicate.

 SELECT *

 FROM CLIENTS CLN,

CONFERENCES CNF,

CONFERNCE_DETAILS CNFD

 WHERE CLN.CLN_ID = CNF.CNF_CLN_ID_CALLER

 AND CNF.CNF_ID = CNFD.CNFD_CNF_ID

 AND CLN.CLN_ID = 2323

www.manaraa.com

 97

 Determining the sequence of joining more than one table is a

very important decision, joining two tables like making a nested loop,

so each record in the first table (outer or driving table) will be

matched with each record in the second table (inner or drive table).

The important thing in joining is placing the non join predicate in the

first of join order. By making a non join predicate table the driving

table of a join operation, the RDBMS effectively reduces join

operation. For example, for a nested loop join, the main loop is

reduced. The non join predicate results in less rows (or no rows at

all), so the inner loop is executed less (or not at all).

 Let us take an example with numbers to see how much

important selecting the driving table first is. For previous SELECT

statement let us consider these facts for three tables as summarized

in Table (4-1):

Table (4-1) Tables Summary

 CLIENTS

(CLN)

CONFERENCES

(CNF)

CONFERENCE_DETAIL

S

(CNFD)

Number of

Rows

100,000 1,000,000 10,000,000

Rows for Client

ID (2323)

1 10,000 100,000

If the database starts by joining CNF table with CNFD table

the join results by (1,000,000 * 10,000,000) 1E+13 loops, in spite of

that not all data in CNF and CNFD tables belong to CLIENT number

www.manaraa.com

 98

2323 as in the SELECT statement, so the database joining the

two tables for all clients then the database will join the resulting data

(1E+13) row with CLN table after applying the non join predicate

(AND CLN_CLN_ID = 2323) which will result for one record, the total

loops will be (1E+13 * 1) for joining the three tables.

But if the database starts by joining CLN table with CNF table

after applying the non join predicate (AND CLN_CLN_ID = 2323),

the join results by (1 * 10,000) loops, then joining the third table

CNFD, the number of loops will be (10,000 * 100,000) 1E+9 loops

which is of course less than the previous method.

 To make database optimizer take the decision of starting by

non join predicate table, the programmer has to send a hint for

optimizer. Hints can be written with any SQL command after the first

word of the SQL statement, also optimizer hints must be started with

(/*+) and end by (*/). As an example of using hints to make the

database optimizer starts by joining CLN table and CNF table using

nested loop operation as follows:

 SELECT /*+USE_NL (CLN CNF)*/ *

 FROM CLIENTS CLN,

CONFERENCES CNF,

CONFERNCE_DETAILS CNFD

 WHERE CLN.CLN_ID = CNF.CNF_CLN_ID_CALLER

 AND CNF.CNF_ID = CNFD.CNFD_CNF_ID

 AND CLN.CLN_ID = 2323

www.manaraa.com

 99

 The agent will try to find any SQL statement with join predicate

and examine if the statement has non join predicate, the agent will

rewrite the statement and send a hint to database optimizer to start

with non join predicate table as shown in Figure (4-17):

Figure (4-17) Check for Join Rewriting

The agent will try to do this process, so the agent will tokenize

the statement and searches for WHERE clause, then it will search if

there are join predicates and non join predicates. If they exist the

agent will add a hint to SQL statement to start with non join

predicate. Figure (4-18) illustrates a flowchart of check for join sub-

process and the pseudo code to implement it.

The Pseudo code is shown as follows:

Tokenize the statement

Get next token

If the token is (WHERE)

Get next token

www.manaraa.com

 111

Search for join predicate

If (exists)

 Search for non join predicate

 If (exists)

 Add hint

 End if

End if

 End if

www.manaraa.com

 111

Figure (4-18) Check for Join Flowchart

www.manaraa.com

 112

4.4.5 Compare Results Use-case
 To measure the efficiency of the agent we have to see the

differences between before and after rewriting process. There are

many measurement variables that can be extracted from database

to evaluate the SQL statement and its behavior, section 5.2 will

discuss these variables in details. So the responsibility of this use-

case is to read these variables for each SQL statement (before and

after rewriting process) and display them at agent interface to be

able to save these variables at next stage.

 Some metrics can be evaluated without executing SQL

command by estimating the time and the number of reads in

database, but others can not be evaluated until we execute the

command and get real numbers about the command. To get correct

results for each command (before and after) the agent executes

both commands at the same time to be sure that the two commands

have the same environments, because if the agent runs each

command separately one after the other there is no guarantee that

we have the same environments for both commands, because they

may for another task be run when one of the commands is under

execution.

 To execute two commands in same time, agent has to create

two threads – thread is parallel execution line created from the main

execution line - then execute two threads in the same time. Each

thread will handle one of the commands such as executing the

command, reading the results, and evaluating the statistical

information and metrics resulting from the command. The button

www.manaraa.com

 113

 (Compare) in the agent interface will execute the threads and wait

for the lowest thread to be finished then the results will be displayed

on the screen. Figure (4-19) shows us two SQL statements with

comparison process still working (Real Time of the left side is

increasing but in the right side is finished), and all other metrics still

not filled until the left side SQL statement is finished as shown in

Figure (4-20), so all other metrics such as (Position, Cost,

Cardinality and etc) are now filled with their values.

Figure (4-19) Comparison in Progress

www.manaraa.com

 114

Figure (4-20) Comparison is Finished

In this use-case the agent starts by initializing all variables and

metrics to start its comparison, the first step is getting the time which

will be considered as start time for both statements, then the two

threads will start at the same time, each thread will execute its SQL

command and wait for results to be retrieved, after retrieving the

results the agent will register the time which will be considered as

finish time for each statement, now the agent has the start time and

finish time so it can easily evaluate the time spent by each SQL

statement. After that the agent will select the statistics generated by

each command and finally display all of the results (the spent time

and statistics) for both commands. Figure (4-21) illustrates a

flowchart of compare results use-case followed by pseudo code that

implements it.

www.manaraa.com

 115

Figure (4-21) Compare Results Flowchart

The Pseudo code is show as follows:

Initialize all variables

Get start time

Run thread procedure (one)

Run thread procedure (two)

Display time spent and statistics

Thread procedure

 Execute SQL command

 Get end time

 Time spent = end time – start time

www.manaraa.com

 116

 Select statistics

4.4.6 Save Results to History Use-case
 To enhance the reusability and efficiency of the agent, the

agent saves all metrics and statistics generated by compare use-

case in a file system to be referenced in the future. All of the results

will be saved in XML file format, so we can reference these files any

time we need. The XML file shown in Figure (4-22) illustrates the

statistics saved by a comparison process.

Figure (4-22) Comparison XML File

The agent responsibility in this use-case is simple, the agent

has to initialize the XML file then read the statistics which is

calculated before then write them to the file and close the

connection. Figure (4-23) shows us flowchart of save results use-

case followed by pseudo code that implements it.

www.manaraa.com

 117

Figure (4-23) Save Results Flowchart

The Pseudo code is shown as follows:

Initialize XML file

Read statistics

Write statistics

Close file

www.manaraa.com

 118

Chapter Five
Agent Performance Analysis

5.1 Overview
In this chapter the performance measurement of the agent is

analyzed and a comparison between old SQL statements with new

SQL will be discussed in details. This chapter will show a technical

detail about performance measurement metrics. Then a comparison

between old measures with new measures will be shown to see the

achievement of the agent.

5.2 Performance Analysis Measurements
 To have a good comparison between old statement and new

statement the researcher has to select the required measurement

metrics to reflect the changes that the agent achieved by rewriting

the SQL statement. Performance measurement variables include

real time spent for statement execution, position, cost, cardinality,

bytes, CPU cost, IO cost, and elapsed time.

Real time: The exact number of seconds needed to execute the

statement; it is measured by subtracting the start time of statement

execution from finish time.

Cost: The estimate number of standardized inputs/outputs (I/Os) it

takes to execute the statement. The standard cost metric measured

by the optimizer is in terms of number of single block random reads,

so one cost unit corresponds to one single block random read. Also

the cost includes CPU costing because in most cases CPU

utilization is as important as I/O; often it is the only contribution to

the cost.

www.manaraa.com

 119

Position: The optimizer's estimated cost of executing the

statement. So most of time position value will be equal to cost value.

Bytes: Number of bytes accessed by the operation. The bytes

touched by the RDBMS to execute the statement.

CPU Cost: The number of machine cycles required for the

operation, it includes CPU cost of query processing (pure CPU cost)

and CPU cost of data retrieval (CPU cost of the buffer cache get).

IO Cost: The number of data blocks read by the operation, it

includes single-block and multi-block reads.

Elapsed Time: The estimated number of seconds needed to

execute the statement, it is an estimation calculated before

executing the statement.

Any SQL command generates several statistics; the most

important statistics are the following:

Recursive calls: Number of SQL statements done by RDBMS

against the database dictionary to enable him to execute the client

SQL statement, for example retrieving table names, column names,

privileges, data format from dictionary to be able to run the client

SQL statement.

DB block gets: Number of logical I/Os for current statement, it is

the number of current blocks fetched in the memory. This means

that this block has been processed before.

www.manaraa.com

 111

Consistent gets: Reads of buffer cache blocks from memory that

have undo data, so it is fetched from memory because the modified

data is not saved yet, and this process makes the RDBMS gets read

consistency image of the data.

Physical reads: Number of blocks read from disk. So it is the first

time the RDBMS fetches this block of data.

Redo size: Amount of redo generated (for DML statements). The

RDBMS saves the old values for any DML statement to bring it back

if the client rolls back his transaction (undo the transaction).

SQL*Net sent: Number of bytes sent from server to client through

the network.

SQL*Net received: Number of bytes sent from client to server

through the network.

SQL*Net roundtrips: Number of roundtrip packets sent from server

to client or client to server through the network.

Sorts (memory): Number of sorts performed in memory if the SQL

statement contains order by clause.

Sorts (disk): Number of sorts performed using temporary disk

storage, this can be happen if the sort can not be finished in the

memory (memory is not enough) and has to be completed in the

disk.

www.manaraa.com

 111

Rows processed: Number of records that have been fetched from

memory or disk, sorted, manipulated, filtered, or the RDBMS make

any operation on these rows.

 From previous measurement variables and other statistics we

can have a good image of agent performance and achievement.

5.3 Calculations, Type Conversion, and Index Usage
Benchmarks
 This section presents the tests done by the agent and the

performance measurements of old SQL statement before rewriting

compared with new SQL statement after rewriting. This section will

discuss three types of rewriting as mentioned in previous chapters.

Rewriting SQL command with new structure taking into

consideration to make the three recommendations:

- Remove the mathematical operations from the left side of

the statement WHERE clause and rewrite it in the right side

of the statement.

- Remove and implicit type conversion so the RDBMS will

not do any hidden type conversion. And the RDBMS will

execute the statement as it is.

- Try any possibility to make the SQL statement to use index

instead of using full table scan.

 If we implement the above recommendations, the database

optimizer will use the index created on the table instead of making

full table scan. And as discussed in Chapter 1 section 1.6.2

implementing the above recommendations will change the

execution of SQL statement from sequential search to binary

search.

www.manaraa.com

 112

5.3.1 Experimental Scenarios
 To have a complete view of the difference that the agent has

done by converting the command, the researcher has to execute the

SQL command before rewriting process, then collect all metrics and

statistics related to this command, after that he has to execute the

SQL command after the rewriting process to collect the same

metrics and statistics, then compare all of these outputs.

 The two experimental scenarios were considered to evaluate

and compare performance when running SQL commands that uses

full table scan before rewriting and SQL commands uses index after

rewriting. These scenarios were repeated several times during

experiments with different number of rows in the tables.

First Scenario: Before Rewrite

 In this scenario the researcher sent SQL statements to the

agent with WHERE clause that makes the database optimizer to

make full table scan decision, then collect the output generated from

the agent, the following SQL statements are just an example of

statements sent to agent:

- SELECT * FROM CLIENTS

WHERE

CLN_ID + 5 = 232323;

- SELECT * FROM CLIENTS

WHERE

ABS(CLN_ID) = 232323;

www.manaraa.com

 113

- SELECT * FROM CLIENTS

WHERE

CLN_PHONE = 9615811581;

- SELECT * FROM CLIENTS

WHERE

TO_NUMBER(CLN_PHONE) = 9615811581;

- SELECT * FROM CONFERENCES

WHERE

TO_CHAR(CNF_SDATE,'MM/YYYY') = '10/2008';

- SELECT * FROM CONFERENCES

WHERE

TRUNC(CNF_SDATE) = '22/10/2008';

 The above SQL statements are very normal and common

statements used by programmers, but all of them will prevent the

index to be used because of the structure of the WHERE clause.

Second Scenario: After Rewrite

 In this scenario the researcher watched the transformed SQL

commands generated by the agent which makes the database

optimizer to use index search instead of full table scan, then collect

the output generated from the agent, the following SQL statements

are example of statements generated from the agent:

- SELECT * FROM CLIENTS

WHERE

CLN_ID = 232323 - 5;

www.manaraa.com

 114

- SELECT * FROM CLIENTS

WHERE

CLN_ID = 232323 OR

CLN_ID = -232323

- SELECT * FROM CLIENTS

WHERE

CLN_PHONE = '9615811581';

- SELECT * FROM CLIENTS

WHERE

CLN_PHONE = '9615811581';

- ALTER SESSION SET

NLS_DATE_FORMAT='MM/YYYY';

- SELECT * FROM CONFERENCES

WHERE

CNF_SDATE = '10/2008';

- ALTER SESSION SET

NLS_DATE_FORMAT='DD/MM/YYYY';

- SELECT * FROM CONFERENCES

WHERE

CNF_SDATE = '22/10/2008';

www.manaraa.com

 115

 The above SQL statements are generated from the agent as

a result of the SQL statement sent to agent in the first scenario in

the order. So we can match the first statement in first scenario with

first statement in second scenario and so on to see how the WHERE

clause was rewritten to use the index search feature.

5.3.2 Variables Discipline
 To control the test, the following variables are disciplined and

controlled to make minimum effect on the test setup:

1- System Load: only the SQL statement was executed in the

database and it is the only session connected to database. So

we insured that the full capabilities of the database were

focused in executing the required SQL statement.

2- Network Load: only one client was connected to the database

server so the full network bandwidth was free for agent use.

3- Caching: a built in database function used to clear the cache

each time the SQL statement submitted to database.

5.3.3 Measurement Benchmark
 The benchmark depends on the number of rows that the table

holds, so the two scenarios were repeated with different number of

rows in the tables. Table (5-1) shows the number of rows in the table

when the run is executed and the output metrics are generated for

each run. Table (5-2) shows number of rows in the table when the

run is executed and the output statistics are generated for each run.

www.manaraa.com

 116

Table (5-1) Metrics for Different Row Number

Number of Rows in Table

Rows 1.0E+06 5.0E+0

6

1.0E+0

7

1.5E+07 2.0E+07

Metrics Old Ne

w

Ol

d

Ne

w

Ol

d

Ne

w

Old Ne

w

Old Ne

w

Real Time

(Seconds)

7.52 0.16 40.7

6

0.16 74.9

8

0.16 103.2

7

0.17 133.9

6

0.35

Postition

(Estimated

Cost)

4213 3 2204

5

3 4429

9

3 67467 3 88888 3

Cost

(Units of

Work)

4213 3 2204

5

3 4429

9

3 67467 3 88888 3

Cardinality

(Number of

Rows)

1 1 1 1 1 1 1 1 20009

8

1

Bytes 652 652 652 652 652 652 652 652 28(6) 139

CPU Cost

(Machine

Cycles)

4E+8 36E+

3

2E+

9

36E+

3

4E+

9

36E+

3

6E+9 36E+

3

8E+9 36E+

3

IO Cost

(Blocks Read)

4144 3 2171

2

3 4363

1

3 66438 3 87533 3

Elapsed

Time

(Seconds)

51 1 265 1 532 1 810 1 1067 1

www.manaraa.com

 117

Table (5-2) Statistics for Different Row Number

Number of Rows in Table

Rows 1.0E+06 5.0E+0

6

1.0E+07 1.5E+07 2.0E+07

Statistics Old Ne

w

Ol

d

Ne

w

Old Ne

w

Old Ne

w

Old Ne

w

Recursive

Calls

(Number of

SQL)

4 1 4 1 4 1 4 1 5 1

DB Block

Gets

(Number of

IO)

0 0 0 0 0 0 0 0 0 0

Consistent

Gets

(Number of

Buffer)

1884

9

4 988

59

4 1988

76

4 3030

40

4 4072

05

4

Physical

Reads

(Number of

Blocks)

1821

6

0 986

25

0 1985

11

0 3018

94

0 4070

89

0

Redo Size

(Number of

Blocks)

0 0 0 0 0 0 0 0 0 0

www.manaraa.com

 118

Bytes Sent

(Bytes)

1069 977 106

9

977 1069 977 1069 977 1069 977

Bytes

Received

(Bytes)

385 374 385 374 385 374 385 374 385 374

Net.

Roundtrips

(Count)

2 1 2 1 2 1 2 1 2 1

Sorts

(Memory)

(Count)

1 0 1 0 1 0 1 0 1 0

Sorts (Disk)

(Count)

0 0 0 0 0 0 0 0 0 0

5.3.4 Results Comparison
 This section presents a comparison of the benchmark tests

results by charts and discusses these results for certain

measurements such as (Real Time, CPU Cost, IO Cost, and

Consistent Gets).

5.3.4.1 Real Time Test Results Comparison
 SQL command real time execution is the most important

measurement used to evaluate the performance between old

command and new command. Figure (5-1) illustrates a logarithmic

chart comparison.

www.manaraa.com

 119

Figure (5-1) Logarithmic Chart for Real Time Results

Comparison

 The real time results plotted as logarithmic chart have been

analyzed. The comparisons are as follows:

1- The real time coefficient for old SQL commands increased

dramatically according to number of rows in the table,

because the old SQL commands use sequential search

which depends on the size of the table and the RDBMS has

to go through each record in the table.

2- The real time coefficient for new SQL commands increased

slightly with increasing number of rows, because the new

SQL command uses binary search.

0.1

1

10

100

1000

Number of Rows

R
e
a
l
T

im
e
 (

S
)

Old SQL

New SQL

Old SQL 7.52 40.76 74.98 103.27 133.96

New SQL 0.16 0.16 0.16 0.17 0.35

1.0E+06 5.0E+06 1.0E+07 1.5E+07 2.0E+07

www.manaraa.com

 121

5.3.4.2 CPU Cost Test Results Comparison

Figure (5-2) Logarithmic Chart for CPU Cost Results

Comparison

 The CPU cost results plotted as logarithmic chart have been

analyzed. The comparisons are as follows:

1- Old SQL uses sequential search and this causes an extra

overhead on the CPU to process each record in the table, so

the CPU cost will be increased by increasing the number of

rows in the table.

2- New SQL uses binary search, with binary search there is just

one extra process if the data inside the table is duplicated, so

the CPU cost will be approximately the same by increasing

the data inside the table.

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

Number of Rows

C
P

U
 C

o
s

t

Old SQL

New SQL

Old SQL 4.0E+08 2.0E+09 4.0E+09 6.0E+09 8.0E+09

New SQL 3.6E+04 3.6E+04 3.6E+04 3.6E+04 3.6E+04

1.0E+06 5.0E+06 1.0E+07 1.5E+07 2.0E+07

www.manaraa.com

 121

5.3.4.3 IO Cost Test Results Comparison

Figure (5-3) Logarithmic Chart for IO Cost Results

Comparison

 The IO cost results plotted as logarithmic chart have been

analyzed. The comparisons are as follows:

1- As CPU cost, the old SQL uses sequential search and this

causes extra overhead on the IO to process each record in

the table, so the IO cost will be increased by increasing the

number of rows in the table.

2- As CPU cost, new SQL uses binary search, so the IO cost

will be approximately the same by increasing the data inside

the table.

1

10

100

1000

10000

100000

Number of Rows

IO
 C

o
s

t

Old SQL

New SQL

Old SQL 4144 21712 43631 66438 87533

New SQL 3 3 3 3 3

1.0E+06 5.0E+06 1.0E+07 1.5E+07 2.0E+07

www.manaraa.com

 122

5.3.4.4 Consistent Gets Test Results Comparison

Figure (5-4) Logarithmic Chart for Consistent Gets Results

Comparison

 The consistent gets results plotted as logarithmic chart have

been analyzed. The comparisons are as follows:

1- As CPU cost and IO cost, the old SQL uses sequential

search, so the consistent gets will be increased by increasing

the number of rows in the table.

2- As CPU cost and IO cost, new SQL uses binary search, so

the consistent gets will be approximately the same by

increasing the data inside the table.

1

10

100

1000

10000

100000

1000000

Number of Rows

C
o

n
s

is
te

n
t

G
e

ts

Old SQL

New SQL

Old SQL 18849 98859 198876 303040 407205

New SQL 4 4 4 4 4

1.0E+06 5.0E+06 1.0E+07 1.5E+07 2.0E+07

www.manaraa.com

 123

5.4 Join Benchmarks
This section presents the tests done by the agent and the

performance measurements of old SQL statement before rewriting

compared with new SQL statement after rewriting. This section will

discuss rewriting of join statements as mentioned in previous

chapters. Rewriting SQL command with new structure taking into

consideration to make none join predicate table as the driving table.

5.4.1 Experimental Scenarios
 To see the achievement done by the agent when converting

the command, we have to execute the SQL command before

rewriting process, then collect all metrics and statistics related to this

command, after that we have to execute the SQL command after

the rewriting process to collect the same metrics and statistics, then

compare all of these outputs.

 The two experimental scenarios were considered to evaluate

and compare performance when running join statements without

any attention if the none join predicate will be used at the first or not.

Then watch the agent how it will convert the join statement to use

none join predicate as a driving table.

First Scenario: Before Rewrite

 In this scenario we sent join SQL statements to the agent

without any attention of none join predicate, the following SQL

statements are just an example of this type of statements:

www.manaraa.com

 124

- SELECT * FROM

COUNTRIES CON, CLIENTS CLN, CONFERENCES CNF

WHERE CON.CON_ID = CLN.CLN_CON_ID

AND CLN.CLN_ID = CNF.CNF_CLN_ID_CALLER

AND CON.CON_NAME = 'JORDAN';

- SELECT * FROM

CLIENTS CLN, CONFERENCES CNF,

CONFERENCE_DETAILS CNFD

WHERE CLN.CLN_ID = CNF.CNF_CLN_ID_CALLER

AND CNF.CNF_ID = CNFD.CNFD_CNF_ID

AND CLN.CLN_ID = 2323;

 The above SQL statements are very normal and common

statements used by programmers, but all of them use none join

predicate as the last line of the statement.

Second Scenario: After Rewrite

 In this scenario we watched the transformed SQL commands

generated by the agent which makes none predicate join as a

driving table:

- SELECT /*+USE_NL(CON CLN) */ * FROM

COUNTRIES CON, CLIENTS CLN, CONFERENCES CNF

WHERE CON.CON_ID = CLN.CLN_CON_ID

AND CLN.CLN_ID = CNF.CNF_CLN_ID_CALLER

AND CON.CON_NAME = 'JORDAN';

www.manaraa.com

 125

- SELECT /*+USE_NL(CLN CNF) */ * FROM

CLIENTS CLN, CONFERENCES CNF,

CONFERENCE_DETAILS CNFD

WHERE CLN.CLN_ID = CNF.CNF_CLN_ID_CALLER

AND CNF.CNF_ID = CNFD.CNFD_CNF_ID

AND CLN.CLN_ID = 2323;

 The above SQL statements are generated from the agent as

a result of the SQL statement sent to agent in the first scenario in

the order.

5.4.2 Variables Discipline
 To control the test, the following variables are disciplined and

controlled to make minimum effect on the test setup:

1- System Load: only the SQL statement was executed in the

database and it is the only session connected to database. So

we insured that the full capabilities of the database were

focused in executing the required SQL statement.

2- Network Load: only one client was connected to the database

server so the full network bandwidth was free for agent use.

3- Caching: a built in database function used to clear the cache

each time the SQL statement is submitted to database.

www.manaraa.com

 126

5.4.3 Measurement Benchmark
 The benchmark depends on two things:

1- The number of rows that the table holds.

2- The number of rows that will be filtered by none join predicate.

So the two scenarios ware repeated with different numbers of

rows for three tables and different numbers of rows filtered by none

join predicate. Table (5-3) shows the total number of rows and

filtered rows in the three tables when the run is executed and the

output metrics are generated for each run. Table (5-4) shows the

total number of rows and filtered rows in the three tables when the

run executed and the output statistics generated for each run.

Table (5-3) Metrics for Join

Number of Rows for Three Joined Tables

Total Rows 1E+12 1E+15 1E+18

Filtered Row 1*100*1000 1*1000*10000 1*10000*100000

Metrics Old New Old New Old New

Real Time

(Seconds)

2.33 1.00 76.17 1.10 18465.56 22.59

Postition

(Estimated Cost)

5984 385 41835 3736 460035 1030382

Cost

(Units of Work)

5984 385 41835 3736 460035 1030382

Cardinality

(Number of

Rows)

93966 93966 794461 794461 24E+9 24E+9

Bytes 18E+7 18E+7 15E+8 15E+8 47E+12 47E+12

www.manaraa.com

 127

CPU Cost

(Machine Cycles)

69E+

7

56E+

6

44E+8 48E+7 24E+11 24E+11

IO Cost

(Blocks Read)

5866 375 41068 3653 37106 37106

Elapsed Time

(Seconds)

72 5 503 45 5521 12365

Table (5-4) Statistics for Join

Number of Rows for Three Joined Tables

Total Rows 1E+12 1E+15 1E+18

Filtered

Rows

1*100*1000 1*1000*10000 1*10000*100000

Statistics Old New Old New Old New

Recursive

Calls

(Number of SQL)

0 0 7 7 576 576

DB Block Gets

(Number of IO)

0 0 0 0 0 0

Consistent

Gets

(Number of

Buffer)

15411

6

1656 15E+6 83277 20E+8 826345

Physical

Reads

(Number of

Blocks)

0 0 0 0 1665661 1665661

www.manaraa.com

 128

Redo Size

(Number of

Blocks)

0 0 0 0 0 0

Bytes Sent

(Bytes)

1975 1975 10E+7 10E+7 93E+7 93E+7

Bytes

Received

(Bytes)

374 374 733711 733711 7333711 7333711

Net.

Roundtrips

(Count)

1 1 66668 66668 666668 666668

Sorts

(Memory)

(Count)

0 0 2 2 4 4

Sorts (Disk)

(Count)

0 0 0 0 0 0

5.4.4 Results Comparison
 This section presents a comparison of the benchmark tests

results by charts and discusses these results for certain

measurements such as (Real Time, Consistent Gets).

5.4.4.1 Real Time Test Results Comparison
 SQL command real time execution is the most important

measurement used to evaluate the performance between old

command and new command. Figure (5-5) illustrates a logarithmic

chart comparison.

www.manaraa.com

 129

Figure (5-5) Logarithmic Chart for Real Time Results

Comparison

 The real time results plotted as logarithmic chart have been

analyzed. The comparisons are as follows:

1- The real time coefficient for old SQL commands increased

dramatically according to number of rows in the table,

because the old SQL will process the multiplication of all rows

in the three joined tables.

2- The real time coefficient for new SQL commands increased

slightly with increasing number of rows, because the new

SQL will process just the filtered rows from three joined

tables.

1

10

100

1000

10000

100000

Number of Rows

R
e

a
l

T
im

e
 (

S
)

Old SQL

New SQL

Old SQL 2.33 76.17 18465.56

New SQL 1 1.1 22.59

1.0E+05 1.0E+07 1.0E+09

www.manaraa.com

 131

5.4.4.2 Consistent Gets Test Results Comparison

Figure (5-6) Logarithmic Chart for Consistent Gets Results

Comparison

 The consistent gets results plotted as logarithmic chart have

been analyzed. The comparisons are as follows:

1- The number of rows processed by old SQL statement is very

large so the consistent gets will fetch all rows in the three

joined tables.

2- The number of rows processed by new SQL statement is

small compared to old SQL statement, so the fetch size will

be minimized.

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

10000000000

Number of Rows

C
o

n
s

is
te

n
t

G
e

ts

Old SQL

New SQL

Old SQL 154116 1.50E+07 2.00E+09

New SQL 1656 83277 826345

1.0E+05 1.0E+07 1.0E+09

www.manaraa.com

 131

5.5 Overhead Has No Influence
 In this section the researcher will discuss if the agent will do

an overhead for running system. There is no doubt that the agent

will do some overhead on the system, but the question is whether

this overhead will affect the overall performance of the running

system or it will not affect at all.

 To answer this question, we have to make some tests and

calculations to get real numbers of the overhead done by the agent,

and compare these numbers with the time that the agent saves by

rewriting the SQL statements. If we examine the agent processes

we will find that the online operations done for each command are:

1- Check syntax

2- Check for rewrite

3- Rewrite the SQL statements

And the other operations like login, validate dictionary are

done off line and once at agent startup.

 By testing each online process and how much time it takes,

we found that the total time for three steps does not exceed

millisecond, so if we compare this with the time saved from rewriting

(from Table (5-1) the third column), the time will be 74.82 (74.98 –

0.16) second, this is the time saved by the agent when executing

the new command. By doing simple calculation, we need to optimize

just one statement from 74820 (74.82 * 1000) SQL statement to be

equal. Of course if we do the same calculations in join large data

www.manaraa.com

 132

 statements (Table (5-3) the third column) we find that we need to

optimize just one statement from ((18465.56 – 22.59) * 1000)

18442410 statement.

5.6 Statistics Limitations
 As mentioned in previous sections, all metrics and statistics

are gathered from the database that the test is performed on. And

of course there are some limitations generated from database such

as accuracy, dependency, and rounding factors. These limitations

can be noticed by examining table (5-1) through table (5-4), and we

can find some equal numbers generated for different numbers of

rows inside the database tables. For example we have the same

real time (0.16 second) for new SQL command from 1.0E+06 until

1.0E+07 row inside the database table as in table (5-1). This

constant number should be increased by increasing the number of

rows inside the database table, but using binary search will minimize

this increment because the RDBMS will exclude the new added data

from first hit, and of course this will not happen when using

sequential search. Another cause is statistics limitations and

number rounding functions that generate the same result for

different set of rows.

www.manaraa.com

 133

Chapter Six
Conclusion and Future Work

6.1 Overview
The aim of this thesis was to develop an agent to rewrite SQL

commands with new syntax with much better performance

compared with old syntax.

The proposed agent has been implemented and tested. The

performance analysis for new SQL commands are compared with

old commands in previous chapters. This chapter includes the

conclusion of all parts of the thesis, recommendations for future

work and suggestions for studies on the development of

performance analysis.

6.2 Thesis Conclusion
 This section revises parts of this research including the

introduction, background and related works, proposed system

design, it includes Furthermore it includes the development and

performance analysis of the proposed system solution.

6.2.1 Performance
 Performance enhancement acquired a major role in database

applications especially when the researcher is talking about data

warehouse applications or online applications that require fast user

response. Enhancements were previously done in the database

side, using different optimizer techniques after accepting the SQL

command. But this thesis focuses on the area that comes before the

database, so this thesis tries to achieve the performance before the

SQL command reaches the database to be executed.

www.manaraa.com

 134

6.2.2 Performance Enhancements
 Most of the researches focus in depth on the area of SQL

command performance enhancements, and most of them reached

very good conclusions. Some of them focused on enhancing

database optimizer capabilities, others focused on rewriting SQL

command by using materialized views, others by using XML

features. But all of them focused on the area following capturing the

SQL command by the database. This thesis did the opposite; it

focused on the area before the SQL command reaches the

database. So this thesis tried to enhance the performance of the

database by sending well done, error free, and professional SQL

commands. Of course when the database receives a good SQL

command the result will be good performance.

6.2.3 Using Agent
 The system that receives a SQL command and rewrites it in

an intelligent way without affecting the resulting data and acquiring

better performance has to be intelligent. An agent came into the

scene holding the important features to do the job like portability,

reliability, and self-maintenance.

The agent acts as a connection layer between the clients and

database server, in the clients side the agent receives the SQL

commands and starts to study these commands to see if they need

to be rewritten or not. In the server side the agent has to keep an

online dictionary of the database to be able to make good decisions

about the SQL commands received by clients. Linking clients with

server has to be secured, so the agent has to maintain security

issues and authorizations.

www.manaraa.com

 135

6.2.4 Performance Analysis
 The comprehensive set of the performance measurements

relating to old SQL command and new SQL command are

considered and focused on many metrics like real time, CPU cost,

IO cost, consistent gets and others.

 Several benchmark tests were done for certain performance

measurements in which the revised data organized in tables were

observed. The benchmark tests results were compared graphically

with each other for old and new SQL. The deduction points of these

results were discussed in detail to explain the true reasons for the

relationship between certain performance measurements and

different SQL commands used.

6.3 Recommendations for Future Work
 This section offers some suggestions for future work. In

addition these recommendations will encourage the researchers to

conduct further studies in the research field.

6.3.1 Development of Proposed Solution Field
 For future work, the proposed solution presented can be

improved by carrying out the following:

1- Develop a solution for other types of functions like (Round,

Truncate, Ceil, and Floor).

2- Develop a solution for other types of SQL commands like

nested SQL.

3- Develop a solution for SQL set commands like (Union,

Intersect, Minus).

4- Develop a solution for XML query language.

www.manaraa.com

 136

6.3.2 Performance Analysis of Proposed Solution
Field
 The presented performance analysis in this research can be

readily extended to include:

1- Research for new algorithms to decrease the execution time

of SQL commands.

2- Research for new algorithms to make all commands use

binary search instead of sequential search.

3- Analyze the effects of the performance measurements when

applying the agent to a different type of database like (SQL

server).

www.manaraa.com

 137

References
 [1] A.Y. Halevy, "Answering queries using views: A survey"

2001, Department of Computer Science and Engineering, University

of Washington, Seattle.

[2] Alin Deutsch and Val Tannen, "Reformulation of XML Queries

and Constraints" 2003, UC San Diego, deutsc, University of

Pennsylvania.

[3] Amit Shukla, Prasad M. Deshpande, Jeffrey F. Naughton,

"Materialized View Selection for Multidimensional Datasets"

1998, Computer Sciences Department, University of Wisconsin –

Madison, Madison.

[4] Brian Brewington, Robert Gray, Katsuhiro Moizumi, David Kotz,

George Cybenko and Daniela Rus, "Mobile Agents in Distributed

Information Retrieval", 1999, Thayer School of Engineering,

Department of Computer Science, Dartmouth College, Hanover,

New Hampshire.

[5] Bryan Genet, Annika Hinze, "Open Issues in Semantic Query

Optimization in Relational DBMS", 2003, Department of

Computer Science, University of Waikato, New Zealand.

[6] Chang-Sup Park, Myoung Ho Kim, Yoon-joon lee, "Rewriting

OLAP Queries Using Materialized Views and Dimension

Hierarchies in Data Warehouses" 2000, supervised by IITA.

www.manaraa.com

 138

[7] Chris M. Giannella, Mehmet M. Dalkilic, Dennis P. Groth, Edward

L. Robertson, "Improving Query Evaluation with Approximate

Functional Dependency Based Decomposition", 2003, NSF

Grant IIS-0092407

[8] Danny B. Lange and Mitsuru Oshima, "Seven Good Reasons

for Mobile Agents", Communications of ACM , vol. 42, no. 3, March

1999.

[9] Glenn Stokol, "Oracle XML Fundamentals", 2004, Oracle

Corporation.

[10] Graham J.L. Kemp, Peter M.D. Gray and Andreas R.Sj

"Rewrite Rules for Quantified Subqueries in Federated

Database" IEEE 2001.

[11] Ivan T. Bowman, Kenneth Salem, "Optimization of Query

Streams Using Semantic Prefetching", SIGMOD 2004, ACM 1-

58113-859-8/04/06.

[12] J. Baumann, F. Hohl, K. Rothermel and M. StraBer, "Mole –

Concepts of a mobile agent system", 1998, IPVR (Institute of

Parallel and Distributed High-Performance Systems), University of

Stuttgart, Breitwiesenstrabe

www.manaraa.com

 139

 [13] J.O. Kephart, D.M. Chess. "The Vision of Autonomic

Computing", IEEE Computers,36(1), 2003, pp. 41 – 52.

[14] John P. Mckenna, "Aggregate Navigation using Materialized

Views and Query Rewrite". 2002, Counterpoint Technologies, Inc.

[15] K. B. Manwade, and G. A. Patil, "Performance Analysis of

Parallel Client-Server Model Versus Parallel Mobile Agent

Model" 2008, ISSN 2070-3740.

[16] Katsuhiro Moizumi, "Mobile Agent Planning Problems", 1998,

Thayer School of Engineering, Dartmouth College,Hanover, New

Hampshire.

[17] Lucian Popa, "Object/relational query optimization with

chase and backchase" 2001, Institute for Research in Cognitive

Science, IRCS Technical Reports Series, University of

Pennsylvania.

[18] Maxim Grinev, "XQuery Optimization Based on Rewriting"

2004, Vorob'evy Gory, Moscow 11992, Russia.

[19] Muralidhar krishnaprasad, Zhen Hua Liu, Anand Manikutty,

James W. Warner, Vikas Arora, Susan Kotsovolos, "Query Rewrite

for XML in Oracle XML DB" 2005. Oracle Corporation.

[20] Oracle corporation, "Building Oracle Data Warehouses"

2004.

www.manaraa.com

 141

[21] Priya Vennapusa, "Oracle Database SQL Tuning Workshop",

2003, Oracle Corporation.

[22] Rada Chirkova and Michael R. Genesereth, "Linearly

Bounded Reformulations of Conjunctive Databases" 2000,

Stanford University, Stanford CA 94305, USA

[23] Rahul Jha, "Mobile agents for e-commerce", 2001, KR School

of Information Technology Indian Institute of Technology, Bombay.

[24] Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of

Database Systems" forth edition, 2004, Pearson Addison Wesley.

[25] Rosie jones, Benjamin Rey, Omid Madani, Wiley Greiner,

"Generating Query Substitutions" 2006, IW3C2, Edinburgh,

Scotland, ACM 1-59593-323-9/06/0005.

[26] Sriram Mohan, Arijit Sengupta, Yuqing Wu, "Access Control

for XML- A Dynamic Query Rewriting Approach" 2005, CIKM'05,

ACM 1-59593-140-6/05/0010.

[27] Yu Jiao and Ali R. Hurson, "Mobile Agents in Mobile Data

Access Systems", 2002, Computer Science and Engineering

Department Pennsylvania State University

[28] Yabin Meng, "SQL Query Disassembler. An Approach to

Managing the Execution of Large SQL Queries" 2007, Queen’s

University Kingston, Ontario, Canada.

www.manaraa.com

 141

[29] William M. Farmer, Joshua D. Guttman, and Vipin Swarup,

"Security for Mobile Agents: Authentication and State

Appraisal" 2002, The MITRE Corporation.

[30] URL "http://en.wikipedia.org/wiki/SQL", web site accessed

on 09-Mar-2009.

[31] URL "http://en.wikipedia.org/wiki/Linear_search", web site

accessed on 15-Mar-2009.

[32] URL "http://en.wikipedia.org/wiki/Binary_search", web site

accessed on 15-Mar-2009.

www.manaraa.com

 142

